Bedienungsanleitung Pipeline-Auslegungstools

Bedienungsanleitung zum Verwenden des Pipelineauslegungstools entstanden im Rahmen des Projekts "H2-Logistik"

Inhalt

1.	Einl	eitung	2
2.	Vers	sionierung	3
3.	Pipe	elineauslegung	3
3	.1	Eingabemaske	3
3	.2	Annahmen und Randbedingungen	4
3	.3	Ergebnisse und Ergebnisinterpretation	4
4.	Pipe	elinedurchmesser-Optimierung	6
4	.1	Eingabeparameter	6
4	.2	Ergebnisse Pipelinedurchmesser Optimierung bei Druckvariation	6
5.	Kon	takt	9

Abbildungsverzeichnis

Abbildung 1- Pipelineauslegungstool und Pipelinedurchmesser Optimierung	2
Abbildung 2- Eingabemaske: Versionierung und Benutzer	3
Abbildung 3- Pipelineauslegung: Beispielwerte Eingabe	4
Abbildung 4- Ergebnisse für Beispielwerte Pipelineauslegung	5
Abbildung 5- Ergebnisinterpretation Beispielwerte Pipelineauslegung	6
Abbildung 6- Pipelinedurchmesser Optimierung: Bsp. p=30 bar und DN-700	7
Abbildung 7- Pipelinedurchmesser Optimierung: Bsp. p=40 bar und DN-700	7
Abbildung 8- Pipelinedurchmesser Optimierung: Bsp. p=50 bar und DN-700	8
Abbildung 9- Ergebnisinterpretation Beispielwerte: p=50 bar, DN-700	8

Patrick Zimmerman & Sanchit Sharma

Fraunhofer-Center für Maritime Logistik und Dienstleistungen CML Blohmstaße 32 21073 Hamburg patrick.zimmerman@cml.fraunhofer.de Tel.: +49 40 42878-4451

1. Einleitung

Das Exceltool zur Auslegung der Pipeline dient zur Bestimmung einer Pipeline, mit der ein Wasserstoffbedarf bei einem vorgebeben Betriebsdruck transportiert werden kann. Die Eingabe für den Anwender erfolgt im Tabellenblatt "Übersicht". In den anderen Arbeitsblättern der Excel-Datei sind die Rohr- und Materialdatenbanken hinterlegt sowie die Hintergrundberechnungen.

Das Pipelineauslegungstool besteht aus zwei unterschiedlichen Abschnitten, siehe Abbildung 1. Der erste Teil von Spalte A bis Spalte F ist die Auslegung der Pipeline. Von Spalte G bis Spalte K ist die Durchmesseroptimierung der Pipeline. In diesem Abschnitt des Arbeitsblatts können einige Parameter variiert werden, um z.B. eine kleinere Pipeline verbauen zu können und dadurch die Kosten für Herstellung und Bau zu senken. Sowohl der Bereich der Pipelineauslegung als auch der Bereich der Pipelineoptimierung sind ähnlich aufgebaut. Im ersten Abschnitt des jeweiligen Bereiches, den Eingabeparametern müssen die Randbedingungen z.B. der Wasserstoffbedarf eingebeben werden. Im zweiten Bereich erfolgt die Ausgabe der Ergebnisse. Der dritte Bereich sowohl bei der Pipelineauslegung als auch bei der Pipeline Optimierung ist die Ergebnisinterpretation.

	Pipeline Auslegung	Pipelinedurchmesser-Optimierung
Auslegung von H2-Pipelines	Fraunhofer	
erechnung des Pipeline-Durchmessers (vet Vet Vet Vet Vet Vet Vet Vet Vet Vet V		Pipelinedurchmesser Optimierung H2 Lagstik reijek H2 Lagstik Statim 17.0.0.02 Bachtnesstinierung 10.000 Burtinesstinierung 10.000 Burtinesstinierung 50 Bachtnesstinierung 00.700 Bachtnesstinierung 00.700
hhost de Pipeline Li BORN, 34040 defruinsicher de Pipeline de Li BORN, 34040 thr Vir Virgengesoten zu Herstellkosten 2 meter de Li Bornen, 2000		Adars Verlagsingkolden zu Merstellikosten Z Zapelinik Software Zapelinik Zapelinik Zapelinik Zapelinik Zapelinik Zapelinik Zapelinik Zapelinik Zapelinikov Zapelinik
Interferindistor Versorgung 1.15 Uckerricul 1.31 Uckerricul 1.31 Schlatz Verlegungskosten der Pijerline DK-1100 2.82.000 C/m Schlatz Verlegungskosten der Pijerline DK-1100 2.82.000 C/m Die empfohiende Pijerline DK-1100 mit Auflendurchmeterser 1118 mm deckt den H2 Die Christian DK-1100 mit Auflendurchmeterser 1118 mm deckt den H2	Refer [JAc. 1000000 1/s ab.	Ygebolinterpretation Mit der Pipelins DN-700 und einem Bertriebsdruck von 50 har kann der Bederf LLcs. 1000000 (/a gedeckt werden. Der Druckablell der augervählten Pipelins DN-700 bertägt 0,51 har.
 <u>Obersicht</u> Pipeline Auslegung Rohrdatenbank Pipeline ent Statmertenbeit Ustrauben 	ptimierung Capex ③	: <

Abbildung 1- Pipelineauslegungstool und Pipelinedurchmesser-Optimierung

2. Versionierung

Alle Zellen, in denen Werte eingegeben oder ausgewählt werden können sind beige hinterlegt. In der allgemeinen Eingabemaske, kann der Anwender eine Versionierung mit Datum und Bearbeiter eintragen und dadurch eine Versionierung vornehmen.

	~		0		1	_
1	Auslegung von H2-Pipelines			Fraunhofer		
2	© 2022 Fraunnoter CIVIL			CMI	•	
3	Berechnung des Pipeline-Durchmess	ers	_			
4	Projekt	H2-Logistik				
5	Datum	17.10.2022				
6	Bearbeiter					
7						
_						
F	Pipelinedurchmesser Optin	nierung	_			
P	rojekt		H2-Log	gistik		
	atum		17.10.	2022		
в	earbeiter					

Abbildung 2- Eingabemaske: Versionierung und Benutzer

3. Pipelineauslegung

3.1 Eingabemaske

Für die Auslegung der Pipeline müssen vom Anwender einige Daten in die Eingabemaske der Exceldatei eingegeben werden. In Zelle B10 muss der geplante Betriebsdruck der Pipeline eingegeben werden, in Zelle B11 der geplante Wasserstoffbedarf. Der Abstand zwischen zwei Verdichterstationen muss in Zelle B12 angegeben werden und dient zur Berechnung des Druckverlustes. In Zelle B13 kann die Stahlsorte für die Pipeline aus einer Vielzahl von Sorten ausgewählt werden. Dies ist zur Berechnung und Auswahl der Wanddicke relevant. Der Anwender kann in Zelle B14 eine weitere Unsicherheit vom Bedarf angeben, falls der bisherige geschätzte Wasserstoffbedarf Schwankungen aufweist. Der letzte Eingabeparameter ist der Faktor Verlegungskosten zu Herstellungskosten. Dieser Kostenfaktor ermöglicht dem Anwender die hinterlegten Kostentabelle mit diesem Faktor auf das individuelle Projekt anzupassen. In Abbildung 3 sind Beispielwerte als Eingabeparameter in die Eingabemaske eingetragen und nachfolgend in der Tabelle 1 zusammengefasst:

Eingabeparameter	Wert	Einheit
Betriebsdruck	20	bar
Kapazität/Bedarf	1.000.000,00	Tonnen pro Jahr
Länge zwischen zwei Verdicht-	6	km
erstationen: 6 km		
Stahlsorte	L360NB	-
	mit einer Streckgrenze von 360	
	N/mm²	
Bedarfsunsicherheit	0	%
Faktor Verlegungskosten zu	2	-
Herstellungskosten		

Tabelle 1- Beispielwerte Eingabe Pipelineauslegung

	А	В	С	D E	F
1	Auslegung von H2-Pipelines			🗾 Fraunhofer	
2	© 2022 Fraunhofer CML			CML	
3	Berechnung des Pipeline-Durchmesse	ers			
4	Projekt	H2-Logistik			
5	Datum	17.10.2022			
6	Bearbeiter				
7					
8	Berechnung Pipeline				
9	Ein- und Ausgangswerte		_		
10	Betriebsdruck	20	bar		
11	Kapazität	1.000.000	t/a		
12	Länge zwischen zwei Verdichterstationen	6	km 🛛		
13	Stahlsorte der Pipeline	L360NB/L360MB			
14	Bedarfsunsicherheit	0	%		
15	Faktor Verlegungskosten zu Herstellkosten	2			
16	•				
17	Ergebnis				
18	Mindest Innendurchmesser	1,074	m		
19	Empfehlung nächstgrößeres Rohr	DN-1100			
20	Rechnerische Wandstärke Rohr (smin) nach DIN 1594	4,78	mm		
21	Dehngrenze des ausgewählten Materials	360	N/mm ²		
22	Auswahl des Rohres	DN-1100			
23	Wanddicke vom Rohr DN-1100	11	mm		
24	Herstellkosten Pipelinerohre	1.414,00	€/m		
25	Kapazität mit Rohr DN-1100	1.145.096	t/a		
26	Sicherheitsfaktor Versorgung	1,15			
27	Druckverlust	0,13	bar		
28	Längensprezifischer Druckverlust	2,11	Pa/m		
29	Geschätzte Verlegungskosten der Pipeline DN-1100	2.828,00	€/m		
30					
31	Ergebnisinterpretation				
32					
33	Die empfohlende Pipeline DN-1100 mit Außendu	rchmesser 1118 n	nm ded	t den H2 Bedarf i.H.v. 1000000 t/a ab.	
34	Der Druckabfall bei der ausgewählten Pipeline DM	I-1100 beträgt 0,1	3 bar.		
35					
36					

Abbildung 3- Pipelineauslegung: Beispielwerte Eingabe

3.2 Annahmen und Randbedingungen

Die Berechnung des Mindestinnendurchmessers erfolgt analytisch mittels des Massenerhaltungssatzes, unter der Annahme, dass ein 24 h 7 Tage Betrieb gefahren wird. Dies gilt sowohl für den Bereich der Pipeline Auslegung als auch für den Bereich der Pipelinedurchmesser-Optimierung. Diffusion vom komprimierten Wasserstoff durch die Pipeline in die Umwelt wird zudem nicht berücksichtigt und vernachlässigt.

Aufgrund der Vereinfachungen wird ein interner Sicherheitsfaktor bei der Auslegung verwendet, Dieser Sicherheitsfaktor beträgt unabhängig vom der zusätzlich Bedarfsunsicherheit 10 %. Damit kann mittels der ausgelegten Pipeline 10 % mehr vom eingegebenen Bedarf transportiert werden. Werden Bspw. 10.000 Tonnen an Bedarf angegeben, wird die Pipeline für den Transport für 11.000 Tonnen Wasserstoff ausgelegt werden.

3.3 Ergebnisse und Ergebnisinterpretation

Von Zelle B17 bis Zelle B29 sind die Ergebnisse der Pipelineauslegung angegeben. Der Anwender muss in diesem Bereich der Ergebnisse <u>keine</u> Eingabe tätigen. Nachfolgend sind die Ergebnisse für die Beispielwerte beschrieben, die in Abbildung 4 dargestellt sind.

Um 1.000.000 t Wasserstoff im Jahr bei einem Druck von 20 bar transportieren zu können, wird ein Mindestdurchmesser von 1,074 m benötigt. Die nächstgrößere Pipeline ist die DN-1100 mit einem Außendurchmesser von 1.118 mm. Die Mindestwanddicke wird nach der DIN-1594 berechnet und beinhaltet Sicherheitsfaktoren der Materialien aus weiteren Regelwerken. Die Mindestdicke beträgt für

das Beispiel mit den oben aufgeführten Werten 4,78 mm. Die nächstgrößere fertigbare Wanddicke für das DN-1100 Rohr beträgt 11 mm.

Die Gesamtkapazität der Pipeline ist in Zelle B25 angegeben und beträgt bei der ausgewählten Pipeline 1.145.096 Tonnen Wasserstoff im Jahr. Der Sicherheitsfaktor für die Versorgung mit Wasserstoff bei Auswahl dieser Pipeline beträgt damit 1,15.

Der absolute Druckverlust und längenspezifische Druckverlust sind in Zelle B26 und B27 angegeben. Kosten für die Herstellung der Pipeline stammen aus Recherchen und sind in Zelle B 24 sowie mit dem entsprechenden Kostenfaktor multipliziert in Zelle B29 angegeben.

	А		В	С	D	E		F
1	Auslegung von H2-Pipelines				🗾 Fra	unl	hofer	
2	© 2022 Fraunhofer CML						CML	
3	Berechnung des Pipeline-Durchmesse	ers						
4	Projekt	H2-L	.ogistik					
5	Datum	17.1	0.2022					
6	Bearbeiter							
7								
8	Berechnung Pipeline							
9	Ein- und Ausgangswerte							
10	Betriebsdruck		20	bar				
11	Kapazität	1	.000.000	t/a				
12	Länge zwischen zwei Verdichterstationen		6	km				
13	Stahlsorte der Pipeline	L360	NB/L360MB					
14	Bedarfsunsicherheit		0	%				
15	Faktor Verlegungskosten zu Herstellkosten		2	1				
16								
17	Ergebnis							
18	Mindest Innendurchmesser		1,074	m				
19	Empfehlung nächstgrößeres Rohr		DN-1100					
20	Rechnerische Wandstärke Rohr (smin) nach DIN 1594		4,78	mm				
21	Dehngrenze des ausgewählten Materials		360	N/mm ²				
22	Auswahl des Rohres		DN-1100					
23	Wanddicke vom Rohr DN-1100		11	mm				
24	Herstellkosten Pipelinerohre		1.414,00	€/m				
25	Kapazität mit Rohr DN-1100		1.145.096	t/a				
26	Sicherheitsfaktor Versorgung		1,15					
27	Druckverlust		0,13	bar				
28	Längensprezifischer Druckverlust		2,11	Pa/m				
29	Geschätzte Verlegungskosten der Pipeline DN-1100		2.828,00	€/m				
30								
31	Ergebnisinterpretation							
32								
33	Die empfohlende Pipeline DN-1100 mit Außendu	rchm	esser 1118 r	nm deckt	den H2 Bedarf i.	H.v. 1000	000 t/a ab.	
34	Der Druckabfall bei der ausgewählten Pipeline DN	1-110	0 beträgt 0,1	l3 bar.				
35								
36								

Abbildung 4- Ergebnisse für Beispielwerte Pipelineauslegung

Ab Zelle B30 ist das Ergebnis zusammengefasst, siehe Abbildung 5. Auch in diesem Bereich muss der Anwender des Tools ebenfalls <u>keine</u> Eingabe tätigen. Fehlermeldungen, die durch eine fehlerhafte Eingabe oder Überschreitung eines Grenzwertes ausgelöst werden, werden ebenfalls in der Ergebnisinterpretation benannt.

	А	В	С	D	E		F	
	Auslegung von H2-Pipelines			—				
1				- Maria 📶 📶	aunn	oter		
2	© 2022 Fraunhofer CML					CML		
3	Berechnung des Pipeline-Durchmesse	ers						
4	Projekt	H2-Logistik						
5	Datum	17.10.2022						
6	Bearbeiter							
7								
8	Berechnung Pipeline							
9	Ein- und Ausgangswerte							
10	Betriebsdruck	20	bar					
11	Kapazität	1.000.000	t/a					
12	Länge zwischen zwei Verdichterstationen	6	km					
13	Stahlsorte der Pipeline	L360NB/L360MB						
14	Bedarfsunsicherheit	0	%					
15	Faktor Verlegungskosten zu Herstellkosten	2						
16								
17	Ergebnis							
18	Mindest Innendurchmesser	1,074	m					
19	Empfehlung nächstgrößeres Rohr	DN-1100						
20	Rechnerische Wandstärke Rohr (smin) nach DIN 1594	4,78	mm					
21	Dehngrenze des ausgewählten Materials	360	N/mm²					
22	Auswahl des Rohres	DN-1100						
23	Wanddicke vom Rohr DN-1100	11	mm					
24	Herstellkosten Pipelinerohre	1.414,00	€/m					
25	Kapazität mit Rohr DN-1100	1.145.096	t/a					
26	Sicherheitsfaktor Versorgung	1,15						
27	Druckverlust	0,13	bar					
28	Längensprezifischer Druckverlust	2,11	Pa/m					
29	Geschätzte Verlegungskosten der Pipeline DN-1100	2.828,00	€/m					
30								
31	Ergebnisinterpretation							
32								
33	Die empfohlende Pipeline DN-1100 mit Außendu	rchmesser 1118 n	nm deckt	den H2 Bedar	f i.H.v. 100000) t/a ab.		
34	Der Druckabfall bei der ausgewählten Pipeline DN	-1100 beträgt 0,1	3 bar.					
35								
36								

Abbildung 5- Ergebnisinterpretation Beispielwerte Pipelineauslegung

4. Pipelinedurchmesser-Optimierung

4.1 Eingabeparameter

Wie bei der Auslegung der Pipeline müssen für die Optimierung des Durchmessers einige Parameter eingegeben werden. In Zelle I10 muss der Betriebsdruck eingegeben und kann entsprechend der Optimierung variiert werden. Die Auswahl der Pipeline erfolgt mittels eines Drop-Down Menüs in Zelle I11. Auch die Stahlsorten sind I12 mittels einem Drop-Down Menü auszuwählen. Der Kostenfaktor kann zu dem Auslegungsbereich verändert und angepasst werden und muss deshalb in Zelle I13 im Bereich des Pipelinedurchmesser-Optimierung eingegeben werden. Für die Optimierung des Pipelinedurchmessers wird angenommen, dass der Bedarf exakt derselbe ist, wie in Zelle B11 eingegeben. Im Beispiel sind das 1.000.000 Tonnen Wasserstoff im Jahr.

4.2 Ergebnisse Pipelinedurchmesser Optimierung bei Druckvariation

Im konkreten Beispiel kann z.B. durch Erhöhung des Betriebsdrucks versucht werden, eine deutlich kleinere Pipeline zum Transport des Wasserstoffs zu verwenden. Aus diesem Grund wird der Betriebsdruck um 10 bar zum Grundwert aus dem Beispiel (20 bar) erhöht und deshalb 30 bar eingegeben. Es soll versucht werden eine vorhandene DN-700 Pipeline für den Transport für Wasserstoff zu verwenden. Stahlsorte und Kostenfaktor sollen sich zu der Auslegung nicht verändern. In der ersten Optimierungsschleife mit 30 bar Betriebsdruck kann z.B. der Bedarf nicht abgedeckt werden, siehe Abbildung 6.

	Н	1	J	K	L	М
1						
2						
3	Pipelinedurchmesser Optimierung					
4	Projekt	H2-Logistik				
5	Datum	17.10.2022				
6	Bearbeiter					
7						
8	Pipelineoptimierung					
9	Ein- und Ausgangswerte					
10	Betriebsdruck	30	bar			
11	Pipelineauswahl	DN-700	-			
12	Stahlsorte der Pipeline	L360NB/L360MB				
13	Faktor Verlegungskosten zu Herstellkosten	2				
14						
15	Ergebnis					
16	Dehngrenze	360	N/mm²			
17	Rechnerische Mindestdicke Rohr (smin) nach DIN 1594	4,56	mm			
18	Wanddicke vom Rohr DN-700	7,3	mm			
19	Innendurchmesser vom Rohr DN-700	696,4	mm			
20	Herstellkosten Pipelinerohre	1.220	€/m			
21	Kapazität mit dem Rohr DN-700	693.473	t/a			
22	Sicherheitsfaktor Versorgung	0,69				
23	Druckverlust	0,30	bar			
24	Langenspezifischer Druckverlust	4,97	Pa/m			
25	Geschatzte Verlegungskösten der Pipeline DN-700	2440,00	€/m			
20	F					
27	ergeomisinterpretation					
20	Ritte wählen Sie eine grö	Rere Dineline aus oder orhöl	han Sia dan	Batriahcdruck		
29	bitte wanien sie eine gro	sere ripenne aus oder ernor	nen sie den	Dechebsoruck.		
30	Der Druckabfall der	r ausgewählten Pipeline DN-	700 beträgt	0,3 bar.		
31						
32						

Abbildung 6- Pipelinedurchmesser Optimierung: Bsp. p=30 bar und DN-700

In der zweiten Iteration der Optimierung wird der Betriebsdruck erneut um 10 bar erhöht und deshalb 40 bar eingegeben. Das Ergebnis inkl. der Ergebnisinterpretation ist in der nachfolgenden Abbildung 7 dargestellt.

	Н		J	K	L	М
1						
2						
2	Pipelipedurchmesser Ontimierung					
2						
4	Projekt	H2-LOGISTIK				
5	Datum	17.10.2022				
0	Bearbeiter					
/						
8	Pipelineoptimierung					
9	Ein- und Ausgangswerte		1.			
10	Betriebsdruck	40	bar			
11	Pipelineauswahl	DN-700				
12	Stahlsorte der Pipeline	L360NB/L360MB				
13	Faktor Verlegungskosten zu Herstellkosten	2				
14						
15	Ergebnis					
16	Dehngrenze	360	N/mm ²			
17	Rechnerische Mindestdicke Rohr (smin) nach DIN 1594	6,08	mm			
18	Wanddicke vom Rohr DN-700	7,3	mm			
19	Innendurchmesser vom Rohr DN-700	696,4	mm			
20	Herstellkosten Pipelinerohre	1.220	€/m			
21	Kapazität mit dem Rohr DN-700	924.631	t/a			
22	Sicherheitsfaktor Versorgung	0,92				
23	Druckverlust	0,40	bar			
24	Längenspezifischer Druckverlust	6,63	Pa/m			
25	Geschätzte Verlegungskosten der Pipeline DN-700	2440,00	€/m			
26						
27	Ergebnisinterpretation					
28						
29	Bitte wählen Sie eine größ	ßere Pipeline aus oder erhöl	hen Sie d	len Betriebsdruck	.	
30	Der Druckabfall der	ausgewählten Pipeline DN-	700 bet	rägt 0,4 bar.		
31						
32						

Abbildung 7- Pipelinedurchmesser Optimierung: Bsp. p=40 bar und DN-700

In der dritten Iteration wird der Betriebsdruck erneut um 10 bar erhöht und 50 bar eingegeben, siehe Abbildung 8.

- 2	Н	l. I	J	J	К	L	М
1							
2							
3	Pipelinedurchmesser Optimierung						
4	Projekt	H2-Logistik					
5	Datum	17.10.2022					
6	Bearbeiter						
7							
8	Pipelineoptimierung						
9	Ein- und Ausgangswerte						
10	Betriebsdruck	50	bar				
11	Pipelineauswahl	DN-700					
12	Stahlsorte der Pipeline	L360NB/L360MB					
13	Faktor Verlegungskosten zu Herstellkosten	2					
14	-						
15	Ergebnis						
16	Dehngrenze	360	N/mm	-			
1/	Rechnerische Mindestdicke Rohr (smin) nach DIN 159	4 7,60	mm				
18	Wanddicke vom Ronr DN-700	12,5	mm				
20	Herstellkesten Dinalinarahra	1 2 2 0	mm £/m				
20	Kanazität mit dem Rohr DN-700	1.220	€/III +/∋				
22	Sicherheitsfaktor Versorgung	1.121.525	4a				
23	Druckverlust	0.50	bar				
24	Längenspezifischer Druckverlust	8.42	Pa/m				
25	Geschätzte Verlegungskosten der Pipeline DN-700	2440.00	€/m				
26	·	,					
27	Ergebnisinterpretation						
28							
29	Mit der Pipeline DN-700 und einem Betr	iebsdruck von 50 bar kann de	Bedar	fi.H.v.	1000000 t/a	gedeckt we	erden.
30	Der Druckabfall de	er ausgewählten Pipeline DN-	700 be	trägt O	,51 bar.		
31							
32							

Abbildung 8- Pipelinedurchmesser Optimierung: Bsp. p=50 bar und DN-700

	Н		J	K		L		М
-								
2								
3	Pipelinedurchmesser Optimierung							
4	Projekt	H2-Logistik						
5	Datum	17.10.2022						
6	Bearbeiter							
7								
8	Pipelineoptimierung							
9	Ein- und Ausgangswerte		1.					
10	Betriebsdruck	50	bar					
11	Pipelineauswani Stablaasta dag Disaliga	DN-700						
12	Stanisorte der Pipeline	LSOUNB/LSOUMB						
14	raktor verlegungskosten zu hersterikosten	2						
15	Freebnis							
16	Dehngrenze	360	N/mm ²					
17	Rechnerische Mindestdicke Rohr (smin) nach DIN 1594	7,60	mm					
18	Wanddicke vom Rohr DN-700	12,5	mm					
19	Innendurchmesser vom Rohr DN-700	686	mm					
20	Herstellkosten Pipelinerohre	1.220	€/m					
21	Kapazität mit dem Rohr DN-700	1.121.525	t/a					
22	Sicherheitsfaktor Versorgung	1,12						
23	Druckverlust	0,50	bar					
24	Längenspezifischer Druckverlust	8,42	Pa/m					
25	Geschätzte Verlegungskosten der Pipeline DN-700	2440,00	€/m					
26	F							
2/	Ergeonisinterpretation							
28	Mit der Pineline DN-700 und einem Petrie	bedruck von 50 har kann der	Bodarf	H v 100000) + /a god	lockt	ordon	
29	Nic der Fipeline DN-700 und einem betrie		Too hat		, tha Ben	CORL W	eruen.	
21	Der Druckabfall der	ausgewaniten Pipeliñe DN-	rou beti	agr 0,51 bar.				
22								
52								

Abbildung 9- Ergebnisinterpretation Beispielwerte: p=50 bar, DN-700

Bei einem Betriebsdruck von 50 bar kann z.B. die DN-700 Pipeline für den Transport von 1.000.000 Tonnen Wasserstoff im Jahr verwendet werden, siehe Abbildung 9. Ist der Kompressor für eine Verdichtung des Fluids auf 50 bar geeignet und ausgelegt, kann durch die Erhöhung des Betriebsdruckes der Pipeline um 30 bar auf 50 bar Überdruck die DN-700 Pipeline verwendet werden und dadurch Herstellungskosten von ca. 196 €/m gesenkt werden.

5. Kontakt

Das Pipeline-Auslegungstool wurde im Rahmen des AiF/FOSTA Projektes 1561 "H2-Logisitk" entwickelt und veröffentlicht. Bei Fragen oder Anmerkungen wenden Sie sich an:

Patrick Zimmerman, M.Sc. Fraunhofer-Center für Maritime Logistik und Dienstleistungen CML Blohmstaße 32 21073 Hamburg patrick.zimmerman@cml.fraunhofer.de Tel.: +49 40 42878-4451