

HERAUSFORDERUNGEN IN DER URBANEN LOGISTIK



DIE STEIGERUNGSRATE DER PAKETSENDUNGEN HAT SICH 2020 MEHR ALS VERDOPPELT

Paketaufkommen bundesweit

Paketaufkommen [Millionen]

Prognose auf Basis von verändertem Kundenverhalten

Trendfortschreibung auf Basis der Daten vor 2020

Hamburg

2017: 95 Mio. Pakte Prognose 2030: 163 Mio. Pakete

Quelle: BIEK KEP-Studie 2021

DER LIEFERVERKEHR TRÄGT ERHEBLICH ZU DEN EMISSIONEN DES URBANEN VERKEHRS BEI

Der Anteil des Lieferverkehrs beträgt in Hamburg zwar nur 10%-15%, aber der urbane Lieferverkehr induziert:

- 25% der CO₂ Emissionen
- 30-50% der Emission anderer Schadstoffe (z.B. NOx)

Ursachen:

- Direkt: Generell h\u00f6here Emissionen bei Lieferfahrzeugen als bei PKW
- Indirekt: Abstoppen & Anfahren anderer Verkehrsteilnehmer verursacht durch das Zweite-Reihe-Parken von Lieferfahrzeugen


Quelle: PROGNOS-Studie 2019

DIVERSE PROJEKTE GESTALTEN DIE URBANE LOGISTIK IN HAMBURG EFFIZIENTER UND VERTRÄGLICHER

Anbieterübergreifende Micro Hubs

Smarte Liefer- und Ladezonen

URBANE WASSERWEGE: ENTLASTUNGSPOTENTIALE FÜR DIE URBANE LOGISTIK?

ES GIBT EINE VIELZAHL VON URBANEN WASSERWEGEN IN HAMBURG

Rückerskanal Hafenbecken, Kanäle und Fleete nördlich der Norderelbe in Hamburg 1000 m

Abbildung 2: Hafenbecken, Kanäle und Fleete nörderlich der Norderelbe in Hamburg

Abbildung 1: Innerstädtische Alsterkanäle in Hamburg

Quelle: OpenStreetMap.org, Lizenz: Creative Commons (CC-BY-SA 2.0)

URBANE WASSERWEGE BIETEN POTENTIALE ZUR ENTLASTUNG DES STRAßENVERKEHRSNETZES

Ausgangslage

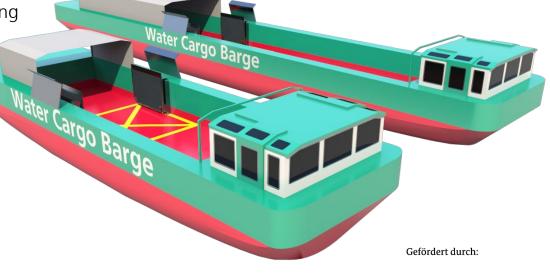
- Stetige Zunahme von Transportverkehren in der FHH
- Straßengüterverkehr belastet Anwohner/innen durch Feinstaub, Stickoxide und Lärm
- Umverteilung bestehender Verkehrsflächen, insbesondere zu Gunsten des Radverkehrs
- Ambitionierte Klima- und Umweltziele der FHH (Green City Plan, Klimaschutzgesetz)
- Vielzahl urbaner Wasserwege in Hamburg, überwiegend ohne logistische Nutzung

Potentiale der Wasserlogistik:

- Reduktion (und ggf. Verlagerung) von Emissionen
- Entlastung des Straßenverkehrsnetzes durch Verlagerung
- (Teil-)autonomer Betrieb u.U. einfacher umsetzbar als im Straßenverkehr
- Machbarkeitsuntersuchung "Water Cargo Barge" (WaCaBa)

WaCaBa – Projektübersicht

März 2021 – Oktober 2021


Gegenstand:

Konzeption und Machbarkeitsstudie des Logistiksystems WaCaBa zur Abwicklung innerstädtischer Lieferverkehre auf den Wasserwegen Hamburgs

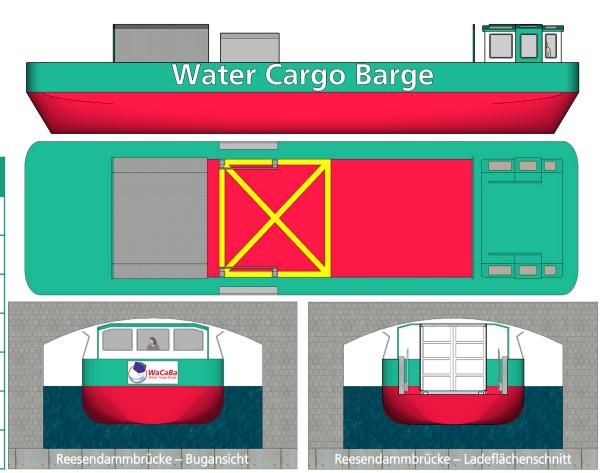
Ziele:

Bestimmung der technischen, rechtlichen und wirtschaftlichen Machbarkeit

Bestimmung der Verkehrsverlagerungs- und Umweltentlastungseffekte einer WaCaBa

Konsortium:

aufgrund eines Beschlusses des Deutschen Bundestages



Technische Spezifikation

Hauptabmessungen

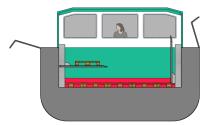
"Alster-Max"

WaCaBa	Groß	Klein
Länge	31,00 m	18,80 m
Breite	5,20 m	5,20 m
Tiefgang	1,40 m	1,40 m
Höhe ü. Wasser	2,30 m	2,30 m
Ladefläche	24,40 x 4,00 m	12,20 x 4,00 m
Zuladung	107,70 t*	64,09 t*
	241,78 m³	120,89 m³

^{*}Auf Basis abgeschätzter Schiffsverdrängung/-gewicht

Technische Spezifikation

Ladung & Umschlag

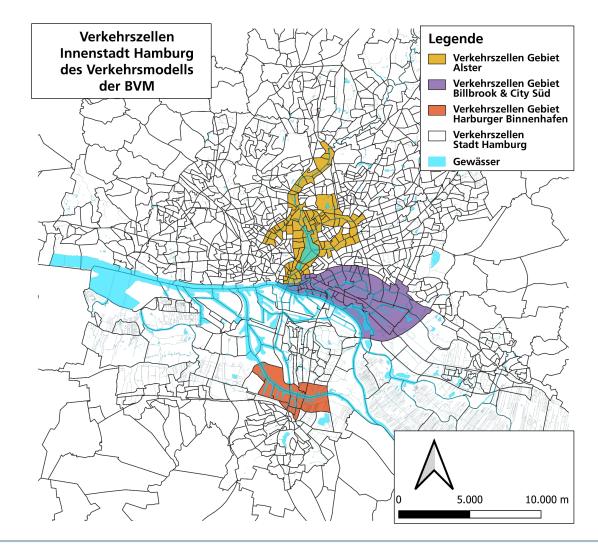

Ladungsbeispiele

- Paletten (EPA)
- Rollende Einheiten (z.B. Gitterboxen → KEP)
- Container (10-40 Fuß)
- Absetzcontainer (Schüttgut)
- Ggf. Lastenfahrräder

Umschlag

- Begehbarkeit durch Rampen-Hubbühnenkombination
- Einsatz von externen Hebewerkzeugen

Bedarfsanalyse

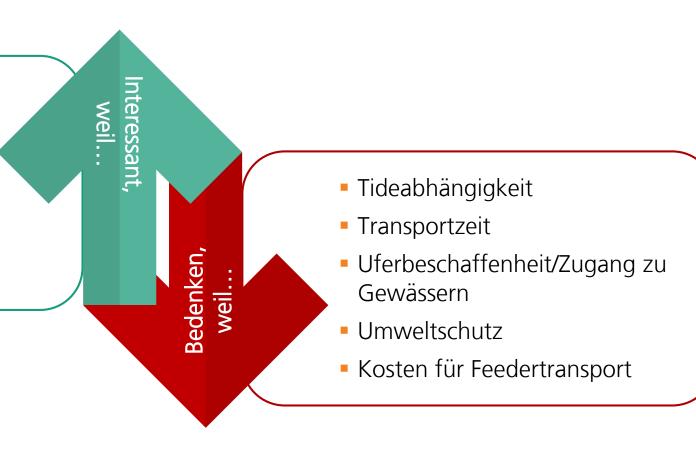

Übersicht der Gebiete

Untersuchungsgebiete:

Die **Alster** von der Schleuse zur Elbe bis zur Fuhlsbütteler Schleuse einschließlich ihrer Kanäle und Fleete

Das Gebiet **Billbrook**, Hammerbrook mit der City Süd einschließlich der tideabhängigen Kanäle an der Elbe, der Bille und des Hammerbrooker Kanalsystems

Der Harburger Binnenhafen hinter der Elbschleuse



KEP Dialoge

Erste Einschätzungen zu einer WaCaBa

- Flächenkonflikt an Land
- Verlagerung von Transporten
- Lokal emissionsarme- bzw. freie Zustellung
- Wasser als Depotfläche

Wirtschaftlichkeitsanalyse

Kosten Betrieb auf Referenzstrecke

Große & Kleine WaCaBa

CAPEX* & OPEX**

460 Fahrten/ Jahr 20 Jahre Nutzungsdauer Personal: 4,5 Personen

Große WaCaBa 1,29 €/tkm 0,58 €/m³km Kleine WaCaBa 1,99 €/tkm 1,05 €/m³km 3,5 t LKW & 7,5 t LKW

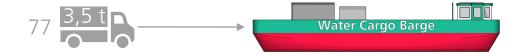
Tagessatz LKW-Betrieb Inkl. Overheads und Fahrzeug

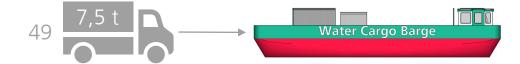
6 Touren/ Tag 1,33 Std./Tour Personal: 1 Fahrer

7,5 t LKW 3,41 €/tkm 0,21 €/m³km

3,5 t LKW 4,88 €/tkm 0,46 €/m³km

^{**} Betriebskosten inkl. Antriebsenergie, Technische Wartung, Personal, Versicherung, Batterie-Leasing

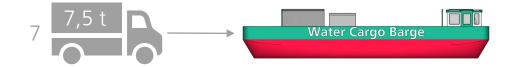



^{*}Kapitalkosten inkl. Schiffskomponenten, Schiffbau, Ladeinfrastruktur

Verkehrsverlagerungseffekt

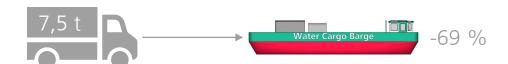
Eingesparte Fahrzeugeinsätze

Nach Tonnen

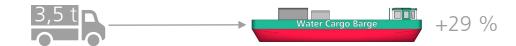


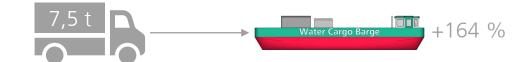
Nach Kubikmeter

Umwelteffekte

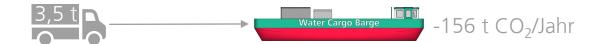

Energieeffizienz [kWh] der WaCaBa in %

Nach max. Tonnage



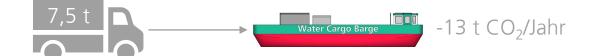


Nach max. Volumen


Umwelteffekte

Lokale CO2-Einsparung p.a. bei 460 Fahrten/Jahr

Nach max. Tonnage



Nach max. Volumen

Autonomer/Unbemannter Betrieb Aktuelle Herausforderungen & Ausblick

Herausforderungen für autonome WaCaBa

- Keine gefestigten oder standardisierten rechtlichen Rahmenbedingungen / Genehmigungsverfahren
- Schlechte empirische Datenlage zur Sicherheit (auch wenn vorhandene Daten vielversprechend sind)
- Unbemanntes Fahren für eine einzelne Barge mit nur einem Besatzungsmitglied aufgrund des Remote Control Centers nicht wirtschaftlich

Ausblick

- In einem Szenario mit vielen autonomen Schiffen (oder größerer Besatzung) bringt der unbemannte Transport erhebliche Skalenökonomien mit sich.
- Es werden groß skalierte Demonstratoren benötigt, um Unsicherheit zu verringern und Daten als Entscheidungsgrundlage für Politik, Versicherer, potenzielle Investoren und weitere Stakeholder zu generieren

Kontakt

M.Sc. Julius Küchle
Ports and Transport Markets
julius.kuechle@cml.fraunhofer.de

Fraunhofer Center für Maritime Logistik und Dienstleistungen CML Am Schwarzenberg-Campus 4, Gebäude D 21073 Hamburg www.cml.fraunhofer.de

Vielen Dank für Ihre Aufmerksamkeit