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Foreword

Dear Reader,

quantum computing is shaping up to revolutionize
scientific computing. It has great potential in facing the
current resource challenges, among others, in chemical
simulations, machine learning, or combinatorial optimi-
zation in logistics. Over the last decade, its research has
evolved from university labs trying to implement single
qubits, the minimal building block for a quantum com-
puter, to large companies as well as start-ups offering
publicly available early-stage quantum computers as a
cloud services. With the number of qubits, that are avai-
lable in these cloud quantum computers, recently having
doubled every year and the accuracy of these devices
steadily growing, this revolution is only a matter of time.

Quantum computing achieves its speedup over classical com-
puters through algorithms, that utilize quantum mechanical
effects. Therefore, developing quantum computing applicati-
ons is more complex than just replacing a classical computer
with a quantum computer. It requires carefully chosen applica-
tions and specific algorithms.

In maritime logistics, these applications could be combinatorial
optimization problems, such as routing, network optimization,
crew scheduling, or stowage planning, where the quantum
computer acts as an enabler to solve more complex problems
than ever, or massively accelerate existing calculations. While
the development of quantum computers themselves are done
by specialized companies, the development of applications

in logistics is only possible in cooperation with the problem
owner and business stakeholder.

The Fraunhofer CML combines knowledge and experience in
maritime logistics, mathematical optimization, and quantum
computing, making it the perfect candidate to support busin-
esses in adopting this new technology.

| hope you enjoy reading this white paper on quantum compu-
ting, its potentials and challenges!

Prof. Dr.-Ing. Carlos Jahn
Director Fraunhofer CML

© Oliver Vonberg
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1.

Quantum computing (QC) hardware is rapidly develo-
ping. If scaling and improvements in the logical accu-
racy keep developing at the current pace, we should
soon see quantum computers (QCs) making their way
into business applications.

QCs have the potential for a game-changing effect on combi-
natorial optimization. In maritime logistics, this could massively
improve planning processes, such as crew scheduling, stowage
planning, routing, or network optimization.

To get ready for utilizing QCs as soon as possible, it is now
time to start preparing! In our opinion, future users need to
start with two things:

m  Use case identification and development: Quantum com-
puting promises solutions for harder problems than ever
before. To achieve that, the first step is to find answers to
the question, how individual businesses can benefit from
this improvement in mathematical capabilities and gain a
real-world competitive advantage.

Executive Summary

= Know-how acquisition and algorithm development:
The different computing model of QCs as compared to
classical computers calls for innovative algorithms. QC
algorithms exploit the unique features of the computing
model, which algorithms for classical calculations would
not be capable of.

Within the scope of R&D projects, Fraunhofer CML supports
businesses from maritime logistics in taking exactly those steps
with a multi-platform approach. By including bridge techno-
logies and QCs, we actively drive the development of the use
case, while also developing specialized quantum algorithms

on downsized proof of principle quantum calculations. This
allows to migrate the calculation to future QCs as soon as they
are technically mature enough to outperform their classical
counterparts. Through close collaboration with our partners,
we also support the acquisition of know-how on QC with a
hands-on approach.






Maritime logistics are the backbone of worldwide trade.
Various actors, for example shipping companies, container
depots, ports as well as logistic companies are responsible for
managing and delivering huge amounts of goods, on time and
to the right places. To achieve this, logistics companies need
to face and efficiently solve various complex challenges with
multiple conflicting requirements. For example, planning:

= the order of ports to be visited by a ship, taking cargo, cus-
tomer, and port specific demands into account,

= the most cost-efficient route for an empty container to be
shipped to the right place at the right time, considering
different transportation modes, with relevant real-world
limits and requirements,

= the best long-term crew assignment to a large fleet of ships,
while complying with various legislative and company-
specific regulations,

= the optimal schedule of tugboats for arriving and departing
vessels,

= efficient crane movements or routes for vehicles in a port
to deliver on-time service in a dynamic environment with
uncertainties.

Quantum Computing and
Maritime Logistics

All these problems form the core of the businesses in maritime
logistics and are characterized by a huge number of possibili-
ties, which makes finding the best one a hard task. Naturally,
companies are highly interested in adequate methods for
solving such combinatorial optimization problems and thereby
improve costs, quality, and environmental impact. To achieve
this, two main challenges arise when applying optimization in
the operative business:

1. In a dynamical environment, outside conditions tend to
change. Therefore, an adequate formalization of the prob-
lem requires domain knowledge and foresight.

2. Combinatorial problems arising in practice are among the
most complex optimization problems. Even high-perfor-
mance computers often reach their limits when tackling
medium-sized real-world instances.

Quantum and guantum-inspired computing promise to have a
game-changing effect on mathematical optimization [1]. Due
to their fundamentally different calculational model, they can
solve certain problems using significantly fewer computational
resources e.g., logical operations. When applied adequately,



this technology can provide valuable services in maritime
logistics.

State-of-the-art quantum computers (QCs) are closing in on the
technical maturity required to outperform classical computers in
solving practical problems. Over the last couple of years, their
number of qubits, a quantum data storage unit, has been rapidly
growing and the error rates in their logical operations are drop-
ping. With those developments, economic, rather than purely
scientific use cases seem reachable within the next few years.
This prospect has sparked strongly increased interest in the topic.
Investments, as well as public interest, in this technology are
rising massively and commercial companies are at the forefront
of the technical development. Some of the most prominent com-
panies working on the commercialization of quantum computing
are: Rigetti [2], Honeywell [3], D-Wave [4], lonQ [5], Google [6],
and IBM [7]. With commercial quantum computing on the hori-
zon, it is time for maritime logistics to start building a readiness
plan for this upcoming technology disruption.

This white paper starts by introducing one of the biggest pro-
blems for mathematical optimization in logistics, namely the
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exploding requirement of calculational resources, in problems
of realistic size. It then goes on, by explaining the potential of
guantum computing with respect to this problem. The next
section first briefly discusses the capabilities of current QCs
and their development. This is used to set up a roadmap to
support businesses in getting ready for quantum computing.
Last, we show possibilities for collaboration with the Fraunho-
fer CML.



Combinatorial Explosion and Limits of Computational Resources

3. Combinatorial Explosion and
Limits of Computational Resources

Due to ever cheaper and more powerful computers
available to everyone nowadays, computational
resources often seem practically infinite to average
users. However, in some areas, such as scientific com-
puting, optimization, cryptography, or artificial intelli-
gence, this is not the case. Here, problems arise which
are so complex, that solving them demands unrealistic
amounts of calculational power. Real-world maritime
logistics problems tend to suffer from that.

Fleetwide Voyage Planning

In combinatorial optimization problems, the number of possibi-
lities increases drastically with the problem size. To understand
this better, let’s consider an example: a simplified variant of
fleetwide voyage planning in shipping companies (Fig. 1). In a
generic form, this problem is defined by a set of delivery jobs,
which have a pick-up harbor, a drop-off harbor, and a capacity
requirement for the freight (usually weight or volume), as well
as a set of ships with maximum loading capacities. The task

is to plan routes for each ship, such that all delivery jobs are

Fig. 1: lllustration of a fleetwide voyage planning problem. Delivery jobs need to be assigned to ships and their routes must be

planned. Additionally, the ships may not be overloaded at any point.
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processed while complying with the maximum loading capaci-
ty of every ship.

The number of possible routes, from which we need to pick
the best one, scales strongly with the number of harbors (or
jobs). In other words, if the number of harbors is increased
slightly, the number of possibilities grows tremendously. Of
course, in such routing problems, the number of possibilities
depends on the details of the application, for example further
constraints or the number of ships in use, but characteristi-
cally for n harbors the number of possibilities grows roughly
as n!=1%2x...x(n-1)*n. The fact, that every additional harbor
increases the number of possibilities by a factor, rather than an
absolute amount, causes the number of possibilities to quickly
grow to amounts that cannot be handled with any kind of
computer. To give an idea how severe such scaling problems
are, here is a placative example:

60 harbors already allow for more possible routes than there
are particles in the universe (roughly 108°).

The above introduced and simplified example of fleetwide
voyage planning illustrated the problem of combinatorial
optimization. Typically, there are too many possibilities to

Heuristics

! Calculation time/
resources

A

individually search through them all, regardless of whether we
use a laptop or a supercomputer. Such problems are usually
tackled by heuristic methods. They make application-specific
assumptions/approximations about the optimal solution and
use that to guide the search. While this guided search can
massively reduce the required calculation time to find a good
solution, they usually cannot guarantee the optimality of the
solution. Afterall, a guided search is merely an educated guess
on which parts of the search space are most likely to include
the optimal solution. So, with heuristics, faster calculation
times do imply that the search space has not been fully che-
cked. Since a reduction of the search space also reduces the
chance of including the best solutions, heuristics introduce a
tradeoff between the complexity of the model to solve, the
required calculation time and the quality of the solution (Fig. 2).

More powerful computers require fewer compromises bet-
ween the calculation time and the quality of the result. This
could improve business applications, because higher quality
solutions translate to more efficient allocation of business
resources, while lower calculation times allow easier replan-
ning, i.e., higher flexibility in dynamical surroundings.



4. Quantum Computing:
Introduction and Potential

Scaling of required computational resources is central to
guantum computing. While classical computers have been
developed to have ever-growing memories and frequencies of
logical operations, the big promise of quantum computing is
not to increase this even further. Instead, QCs calculate more
efficiently due to their totally different way of working. More
precisely, there are certain problems, where the calculational
resources (especially time) a QC requires scale less harsh than
those a classical computer requires. Some of the major fields
in which QCs offer great potential are listed in Fig. 3.

Potential Quantum Computing Applications

Random
Number
Generation

Binary
Optimization

Chemistry
Simulation

Differential
Equations

Machine
Learning

Convex
Optimization

Drug
Design and
Develop-
ment

Cryptography

Quantum computers can achieve this improved scaling of
computational resources by offering different resources
combined with different algorithms. Instead of normal bits,
they have qubits, which do not only allow values of zero or
one, but also so-called quantum superpositions. To unders-
tand this distinction, one should think of the values, that a
qubit can take, as possibilities, with probabilities assigned
to each of them. This is fundamentally different, because

a classical bit always has a deterministic state, i.e., cannot
have statistical states. A qubit on the other hand, could,
for example, be in a 50:50 state, in which both values are
equally likely (Fig. 4).

Bits vs. Qubits
Bit

Classical Computing

Qubit

Quantum Computing




This seemingly small difference between classical bits and qubits
has huge implications. While n classical bits can take 2" different
states, n gbits can take any quantum superposition, i.e., statis-
tical mixture of these states, thereby forming a 2" dimensional
space, also known as vector space. While the technicalities of
this mathematical construct are not the topic of this work, it is
important to understand, that this kind of vector space cannot
easily be simulated on a classical computer. In fact, it would
have the same issue as other complex problems, for example
the fleetwide voyage planning problem introduced in the last
section: it scales badly. Simulating one additional qubit doubles
the problem size. In a QC, this huge state space does not have
to be simulated though, but it is physically implemented, and we
can operate on it easily and efficiently. So, in essence, quantum
computing utilizes a harshly scaling state space for solving har-
shly scaling problems to outperform classical computers.

One less abstract way to illustrate the advantages of those
probabilistic states is the idea of quantum parallelism. A
guantum computer can apply a function to a superposition
(statistical mixture) of inputs, which will result in a superposi-
tion of results. A classical computer cannot do that. To apply a
function to multiple inputs, it needs to either work sequentially
or, it needs multiple processors for normal parallelization. The
shortcoming of simply imagining QC as a way of parallelization
is, that the result is also a quantum superposition. Extracting a
meaningful answer, i.e., a concrete non-statistical result, from
that superposition is often the main problem in quantum algo-
rithms (for example so-called amplitude amplification).

While the high dimensional state space of a quantum computer
is immensely powerful, it is not always trivial to utilize it and
gain an advantage over classical algorithms. Examples of prob-
lems and corresponding algorithms, that offer a scaling impro-
vement over classical calculations do exist though. The most
famous one is probably Shor’s algorithm for prime factorization,
which yields an exponential speed up [8] [9]. In other words, the
calculation time required to solve this task on a classical compu-
ter is an exponential of the length of the problem. On a QC, the
calculation time is a polynomial of the length of the input data,
so the quantum speedup grows with the problem size. Howe-
ver, the potential application of Shor’s algorithm is in cryptogra-
phy and therefore, not directly relevant in logistics.

For logistics, we are interested in optimization and, related to it,
search algorithms. Grover’s algorithm is a search algorithm that
searches through N possibilities, but only scales with (/N [10]. That
means for a sufficiently large search space, it requires less steps
than there are possibilities, even though it does check every single
one (Fig. 5)! This kind of search is strongly related to optimization
— Grover's algorithm searches an item that fulfils certain conditi-
ons, an optimization algorithm searches an item that optimizes a
function. Both tasks become difficult, if the number of possibili-
ties is very large. Because of the similarity of the problems, there

is hope to speedup optimization in a similar fashion as normal
searches, for example by using the Quantum Approximate Opti-
mization Algorithm (QAOA), a quantum optimization algorithm
for generic functions. But even if QAOA cannot live up to those
expectations, we could still decompose optimization tasks into
multiple decision (i.e., search) problems and thereby directly utili-
ze the speedup of Grover's algorithm in optimization tasks.

The examples above clearly show one important fact: the
speed-up, that a quantum computer offers, depends strongly
on the problem one wants to solve. It does not automatical-

ly outperform classical computers on everything. Quite the
opposite, classical computers are cheaper, larger, simpler and,
at least at this point of technical development, more reliable.
Therefore, quantum computers are only useful if one leverages
their advantages.

Due to this tradeoff between scaling advantages and disad-
vantages in size and cost of the system itself, the choice of use
cases is essential to applied quantum computing. The per-
spective QCs offer for optimization are scaling improvements
in combinatorial optimization. Such improvements can either
enable us to solve problems that were not feasible before,
allow us to improve the approximations and thereby increase
the quality of the solution, or simply reduce calculation times
to increase the flexibility in planning.

Quantum Speedup in Unstructured Searches

Classical Computers
Brute Force Search

Quantum Computers
Quantum Computing

1 ~1
. million . thousand
steps steps




5. Current state of Technology

5.1 QC Hardware

There has been remarkable progress in the development of
guantum computers over the last couple of years. In contrast
to classical computers, where there is one well-established
hardware technology, namely semiconducting transistors
based on silicon, in quantum computing there is not yet one
clear winner in the competition for the best quantum compu-
ting hardware platform.

In fact, there are not only different approaches to the physical
implementation of qubits, but even multiple approaches to the
calculational model. To name the most prominent ones:

® gate-based universal quantum computing
®  measurement-based quantum computing
= annealing.

Even though there are vastly different approaches to building
QCs, the fundamental problems are the same: First, scaling the
size of a quantum computer is much harder than scaling a clas-
sical system. Second, as opposed to digital computers, QCs,

as probabilistic machines, have a continuous state space which
makes them vulnerable to arbitrarily small sources of errors.

To understand this better, let’s start with classical bits: they
can only be in one of two clearly distinct states, 0 or 1, and
switching between those two sates requires a control pulse

of some minimum strength. If any weak perturbation from

the surroundings hits the classical bit, nothing happens. This
results in classical bits, that work almost without any errors. A
guantum bit on the other hand, has a continuous state space,
i.e., it is possible to make arbitrarily small changes to the state
of the qubit. The problem is that arbitrarily small perturbations
from the surroundings then induce (small) errors to the state of
the qubit. Even though the single errors might be small, they
add up, thereby quickly destroying the data encoded in the
qubit. This is actually also the reason why most quantum com-
puters are cooled down to nearly zero temperature, because it
reduces the amount of thermal perturbations in the system.

Both these issues confine the size of feasible quantum calcu-
lations. While the size of the device limits the amount of data,
that can be stored and processed, the propensity to errors
limits the length of the calculation. If a program is so long, that
statistically logical errors are expected to occur, the result is not
trustworthy. In principle that also applies to classical compu-
ters. Practically it is not an issue though, because their error
rates are just low enough (roughly a factor 10?* smaller than
the most advanced quantum computers).

The largest available (universal) quantum computers just
recently broke the 50 and 100-qubit barriers [6] [11] [7]. While
that is an impressive technological achievement, it still means,
that current quantum computers can only work on problems
with variables that fit in roughly 100 bits. Of course, most real-
world problems are larger than that (at least in logistics).

In these QCs, the chance for errors during any calculation, is
still too high to do useful calculations, even ignoring size cons-
trictions. In the long run, this shortcoming is not as severe as it
might seem though, because of so-called quantum error cor-
rection. It describes the possibility to bundle multiple physical
qubits together into one logical qubit, thereby creating redun-
dancy, and to actively correct errors in the physical qubits [12].
Implementing quantum error correction is technically deman-
ding, because it requires a relatively high minimal accuracy in
the underlying physical qubits. There are different estimates for
this requirement, ranging from an error rate of roughly 10 to
well below 107 (errors per operation), due to differences in the
assumed noise model and error correction technique.

Since error correction performs better with more physical
qubits per logical qubit, it introduces a tradeoff between
accuracy and qubit number. This grants the ability to build
arbitrarily reliable qubits and would be a huge milestone for
guantum computing, so there has been a lot of work towards
demonstrating it in experiments, for example [13] [14] [15] [16].
With error rates of less than 10~ even for 2-gbit operation,
current technology is approaching this milestone.



At first sight, the improvement of accuracy at the cost of redu-
cing the size of quantum computers might not seem to be very

useful, because right now size is already lacking. The important
thing to notice is the speedup in increasing the size of quan-
tum computers. This speedup is most visible in the develop-
ments of the last few years and the developments to come.
While it took many years to develop decent qubits and not
so long ago the step from one qubit to 3 or 5 qubits on one

chip was a significant technical challenge, now there are plans

to increase the qubit number from roughly 100 to over 1000
within only two years [17]. While those plans are ambitious,
they do seem realistic, because the most fundamental scaling
issues already had to be solved for the current generation of

devices. Now the improvements are more continuous resulting

in continuously increasing sizes of QCs (Fig. 6).

Quantum Computing Timeline

Formulation of the no-cloning theorem

First conference on Physics of Computation

Discovery of Grover's algorithm: Quadratic speedup
in search problems

Creation of a qubit on a chip (ion trap), making
it scalable

D-Wave announces Quantum Annealer

Cloud QC grows to 27 qubits
Cloud QC grows to 127 qubits
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Feynman states possibility of quantum computation

First attempts of formulating Quantum
Information Theory

Discovery of Shor’s algorithm: Exponential speedup
in prime factorization

Experimental demonstrating of Shor’s algorithm with
7 qubits

Creation of a solid state qubit (superconducting)

First universal Cloud Quantum Computer (5 qubits, IBM)

Cloud QC grows to 65 qubits



5.2 QC Algorithms

To utilize QC, we do not only need good hardware, but also
algorithms that solve real-world problems while using the
advantages of a QC. We already pointed to scaling speedups
a QC can achieve over a classical computer. As mentioned
before, in the context of maritime logistics, we mostly care
about optimization and possibly search problems, hoping for
a quadratic speedup. So, just like the Grover algorithm can
search through n? possibilities in ~n steps, we hope for the
same effect in QAOA.

While a quadratic speedup would be a great technological
achievement, there is one problem though. Many problems,
in logistics, scale exponentially. Since the square root of an
exponential is still an exponential, the scaling would not be
qualitatively improved, instead only the exponent would

be divided by two, thereby only doubling the size of feasi-
ble problems. It seems like a rather specific case, in which
doubling the feasible problem size is worth the cost of using
QGCs.

Especially in logistics, most planning tasks are just too large
if the underlying calculation scales exponentially (regardless
of a factor 2 in the exponent). Therefore, we believe, that in
order to utilize quantum computing in practice, we need to
do the same thing as in classical computing, namely develop
problem-dependent heuristics, that yield a tradeoff bet-
ween required calculational resources and the quality of the
solution. If we succeed in combining a heuristic that scales
polynomial with a quadratic speedup, this will result in a
qualitative scaling improvement, namely a lower polynomial
order.

A major challenge to this approach is the difficulty to design
algorithms for QCs, which offer a scaling speedup over
classical systems. But as a first step, designing completely
new algorithms might not even be necessary. Instead using
existing algorithms, like the Grover algorithm or QAOA, and

Computing Platforms

Digital Annealer

Quantum Annealer

developing heuristics that bias the search space already has
the potential to outperform classical computers, because it
combines the speedup from using a heuristic with the QC's
scaling speedup. Technically it is already known how to bias
the search space [18] [19] [20], namely by adapting the so-
called mixer, an operator that is part of the algorithms [21].
Therefore, the next step is to develop suitable heuristics for
specific logistic applications, implement them and test them.

Developing applications for QCs, including the identification
of suitable problems, creating mathematical models, and
customizing quantum algorithms, is hindered by the currently
immature technology. Developing the use case and its mathe-
matical model requires calculations with realistic, i.e., large
data instances — realistic problems tend not to fit in roughly
100 bits - but developing quantum algorithms requires
experiments with a QC or simulation environment, which are
small and in the case of real QCs prone to error. To parallelize
the development of the use case and the algorithm, we plan
to include QCs and bridge technologies in our work.

5.3 Computing Platforms

There are various bridge technologies between normal
classical computers and QCs ranging from simulation envi-
ronments running on GPU clusters to so-called annealers,
which are specialized computers for one form of optimization
problem, namely quadratic unconstrained binary optimiza-
tion (QUBO) tasks. This confinement allows annealers to be
specifically designed for one algorithm, thereby significantly
boosting their performance. Let's first get an overview over
the computing platforms that we consider for our work:

= Digital annealer (for example Fujitsu, Hitachi): A classical
annealer based on bits, not qubits. As a classical system, it
is technically mature, i.e., works reliably and at useful scales
(~8000 bit). It uses thermal annealing, a well understood
process, as its optimization algorithm and has a chip

Universal
Quantum Computer



architecture that is optimized for exactly this algorithm. On
the downside, as a classical device, it does not offer the
potential for a scaling speedup like quantum devices.
Quantum annealer (D-wave): The quantum analogue to

the digital annealer, based on qubits and using quantum
annealing as its algorithm. Due to its concept as a special
purpose machine, its technical requirements are lower than
that of a universal quantum computer. That translates to a
greater technical maturity, which is most visible through the
scale of these systems (~5000 qubits). On the downside, the
question whether these devices, with their current hard-
ware and algorithm, offer a scaling speedup over classical
systems is subject to controversy. It would be interesting to
let a digital annealer and a quantum annealer compete on
some applied problems.

pbe Stock, James Thew

Simulation environment: It is possible to simulate suffi-
ciently small quantum calculations on classical computers.
This allows the development of algorithms in a controlled
environment, which mainly refers to error free simulated
qubits, or controlled error models. This avoids the implicit
length restriction on quantum algorithms for current QCs.
Universal quantum computers: As discussed, these devices
are not yet technically mature, but offer the potential for
scaling improvements. As an advantage over the quantum
annealer, it offers the possibility to run arbitrary algorithms
and therefore solve arbitrary problems.




6. What now?

Developing QC Applications

Quantum Computing is a technology with great potential, but
still with insufficient technical maturity. The potential for drastic
improvements in calculation speed, to a point that it will enable
completely new use cases for mathematical optimization in
maritime logistics, is therefore concealed by the current state of
hardware technology. This makes the development of QC appli-
cations challenging, because testing mathematical models and
algorithms is not straight forward. After all, the device these
highly complex calculations should run on, is not yet ready.

Quantum Roadmap

Platform-Independent
Modeling

Backend Solver

Especially the identification of use cases and developing suitable
mathematical models, that accurately represent the real-world
challenges faced in the maritime industry, should not be unde-
restimated. In opposition to that, discussions about QCs usually
focus on solving mathematical models but not on defining them.
This highlights their role as enablers but does not work towards
providing full solutions to problems in logistics. To allow testing
and iterative development of applications and mathematical
models, one needs to be able to solve realistically sized optimi-
zation problems. This is possible by confining the form of the

Test & Evaluation

) —
) —

o/ =—

m |dentify suitable use case
m Develop mathematical model
m Express as QUBO

m Develop frontend:
— Tranlation to QUBO parameter
— Translation of QUBO solution

m Choose calculational platforms
m Create downsized problem for QC

m Develop solver

o/ —

m Evaluate and adapt:
— use case definition
— mathematical model
— optimization target

m Test solvers

m Evaluate short-, mid- and long-
term potential of each platform



mathematical models that we develop to QUBO and using
(digital and/or quantum) annealers. Annealers seem like a
great choice, because QC applications will always be com-
plex problems, such that large amounts of calculation power
are necessary. Of course, they do not offer the performance
we expect from a mature QC, but since testing does not
have the same time and quality constraints as an operational
environment, they are sufficient for the development of QC
applications.

While annealers allow the development of use cases, they
are useless for the development of quantum algorithms for
optimization. Developing those requires using current QCs
and/or simulation environments, where downsized versions
of the original optimization problem can be run. Including

© Adobe Stock, DP

different computing platforms allows the parallelization of
both developments.

Especially when using multiple platforms for calculations,
we define work modules (Fig. 8), which clearly distinguish
between generic and platform-specific developments. Since
the computing platform is only the solver of the mathemati-
cal optimization problem, most developments turn out to be
generic.



7. Opportunities for Cooperation Current
state of Technology

Fraunhofer CML supports companies in closing the
gap between cutting edge technology developments
and roll out to the operative business. It combines
experience and know-how of both, quantum com-
puting and maritime logistics, making it the per-

fect partner for the development of early-stage QC
applications. Like the modular setup of the quantum
roadmap, we also modularize our professional services
by defining multiple levels for each project:

Companies with limited experience/expertise in mathemati-
cal optimization or QC

Support in identifying potential for improvements in opera-
tional business through mathematical optimization

First conceptualization of a software solution

Feasibility study

Benefit estimation of using QCs

Low entrance barrier
Focus on big picture and adding value
Treat QC as a means not an end



m Level 2: Follow the Quantum Roadmap - (:} Level 3: Final Solution -
Calculate and Iterate Creating a Software Tool

Requires: Requires:

= A suitable use case (compare level 1) = Development of use case and mathematical model
completed
m  (Clear decisions on user interface
m At least one feasible solver developed (compare level 2)

I [

m Develop user interface m Development of a software solution for use in operative
m Development of mathematical model business
®  Proof of principle and test calculations

= Test and improve use case with real data instances = Use the technology in operational business
®  Acquire know-how and hands-on experience on QCs
= Quantitative estimate of operational benefit based on test

calculations
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