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Foreword

Dear Reader,

quantum computing is shaping up to revolutionize 
scientific computing. It has great potential in facing the 
current resource challenges, among others, in chemical 
simulations, machine learning, or combinatorial optimi-
zation in logistics. Over the last decade, its research has 
evolved from university labs trying to implement single 
qubits, the minimal building block for a quantum com-
puter, to large companies as well as start-ups offering 
publicly available early-stage quantum computers as a 
cloud services. With the number of qubits, that are avai-
lable in these cloud quantum computers, recently having 
doubled every year and the accuracy of these devices 
steadily growing, this revolution is only a matter of time.

Quantum computing achieves its speedup over classical com-
puters through algorithms, that utilize quantum mechanical 
effects. Therefore, developing quantum computing applicati-
ons is more complex than just replacing a classical computer 
with a quantum computer. It requires carefully chosen applica-
tions and specific algorithms. 

In maritime logistics, these applications could be combinatorial 
optimization problems, such as routing, network optimization, 
crew scheduling, or stowage planning, where the quantum 
computer acts as an enabler to solve more complex problems 
than ever, or massively accelerate existing calculations. While 
the development of quantum computers themselves are done 
by specialized companies, the development of applications 
in logistics is only possible in cooperation with the problem 
owner and business stakeholder.

The Fraunhofer CML combines knowledge and experience in 
maritime logistics, mathematical optimization, and quantum 
computing, making it the perfect candidate to support busin-
esses in adopting this new technology.

I hope you enjoy reading this white paper on quantum compu-
ting, its potentials and challenges!

Foreword

Prof. Dr.-Ing. Carlos Jahn 
Director Fraunhofer CML
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1.	 Executive Summary

Quantum computing (QC) hardware is rapidly develo-
ping. If scaling and improvements in the logical accu-
racy keep developing at the current pace, we should 
soon see quantum computers (QCs) making their way 
into business applications.

QCs have the potential for a game-changing effect on combi-
natorial optimization. In maritime logistics, this could massively 
improve planning processes, such as crew scheduling, stowage 
planning, routing, or network optimization.

To get ready for utilizing QCs as soon as possible, it is now 
time to start preparing! In our opinion, future users need to 
start with two things: 

Use case identification and development: Quantum com-
puting promises solutions for harder problems than ever 
before. To achieve that, the first step is to find answers to 
the question, how individual businesses can benefit from 
this improvement in mathematical capabilities and gain a 
real-world competitive advantage. 

Know-how acquisition and algorithm development: 
The different computing model of QCs as compared to 
classical computers calls for innovative algorithms. QC 
algorithms exploit the unique features of the computing 
model, which algorithms for classical calculations would 
not be capable of.  

Within the scope of R&D projects, Fraunhofer CML supports 
businesses from maritime logistics in taking exactly those steps 
with a multi-platform approach. By including bridge techno-
logies and QCs, we actively drive the development of the use 
case, while also developing specialized quantum algorithms 
on downsized proof of principle quantum calculations. This 
allows to migrate the calculation to future QCs as soon as they 
are technically mature enough to outperform their classical 
counterparts. Through close collaboration with our partners, 
we also support the acquisition of know-how on QC with a 
hands-on approach. 
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Maritime logistics are the backbone of worldwide trade. 
Various actors, for example shipping companies, container 
depots, ports as well as logistic companies are responsible for 
managing and delivering huge amounts of goods, on time and 
to the right places. To achieve this, logistics companies need 
to face and efficiently solve various complex challenges with 
multiple conflicting requirements. For example, planning:

the order of ports to be visited by a ship, taking cargo, cus-
tomer, and port specific demands into account,
the most cost-efficient route for an empty container to be 
shipped to the right place at the right time, considering 
different transportation modes, with relevant real-world 
limits and requirements,
the best long-term crew assignment to a large fleet of ships, 
while complying with various legislative and company- 
specific regulations,
the optimal schedule of tugboats for arriving and departing 
vessels,
efficient crane movements or routes for vehicles in a port 
to deliver on-time service in a dynamic environment with 
uncertainties. 

2.	 Quantum Computing and  
Maritime Logistics 

All these problems form the core of the businesses in maritime 
logistics and are characterized by a huge number of possibili-
ties, which makes finding the best one a hard task. Naturally, 
companies are highly interested in adequate methods for 
solving such combinatorial optimization problems and thereby 
improve costs, quality, and environmental impact. To achieve 
this, two main challenges arise when applying optimization in 
the operative business:

1.	 In a dynamical environment, outside conditions tend to 
change. Therefore, an adequate formalization of the prob-
lem requires domain knowledge and foresight.

2.	Combinatorial problems arising in practice are among the 
most complex optimization problems. Even high-perfor-
mance computers often reach their limits when tackling 
medium-sized real-world instances.  

Quantum and quantum-inspired computing promise to have a 
game-changing effect on mathematical optimization [1]. Due 
to their fundamentally different calculational model, they can 
solve certain problems using significantly fewer computational 
resources e.g., logical operations. When applied adequately, 
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Quantum Computing and Maritime Logistics 

this technology can provide valuable services in maritime 
logistics.

State-of-the-art quantum computers (QCs) are closing in on the 
technical maturity required to outperform classical computers in 
solving practical problems. Over the last couple of years, their 
number of qubits, a quantum data storage unit, has been rapidly 
growing and the error rates in their logical operations are drop-
ping. With those developments, economic, rather than purely 
scientific use cases seem reachable within the next few years. 
This prospect has sparked strongly increased interest in the topic. 
Investments, as well as public interest, in this technology are 
rising massively and commercial companies are at the forefront 
of the technical development. Some of the most prominent com-
panies working on the commercialization of quantum computing 
are: Rigetti [2], Honeywell [3], D-Wave [4], IonQ [5], Google [6], 
and IBM [7]. With commercial quantum computing on the hori-
zon, it is time for maritime logistics to start building a readiness 
plan for this upcoming technology disruption.

This white paper starts by introducing one of the biggest pro-
blems for mathematical optimization in logistics, namely the 

exploding requirement of calculational resources, in problems 
of realistic size. It then goes on, by explaining the potential of 
quantum computing with respect to this problem. The next 
section first briefly discusses the capabilities of current QCs 
and their development. This is used to set up a roadmap to 
support businesses in getting ready for quantum computing. 
Last, we show possibilities for collaboration with the Fraunho-
fer CML.
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Combinatorial Explosion and Limits of Computational Resources

Fig. 1: Illustration of a fleetwide voyage planning problem. Delivery jobs need to be assigned to ships and their routes must be 

planned. Additionally, the ships may not be overloaded at any point.

Pick-up point

Drop-off point

Route

Fleetwide Voyage Planning

Due to ever cheaper and more powerful computers 
available to everyone nowadays, computational 
resources often seem practically infinite to average 
users. However, in some areas, such as scientific com-
puting, optimization, cryptography, or artificial intelli-
gence, this is not the case. Here, problems arise which 
are so complex, that solving them demands unrealistic 
amounts of calculational power. Real-world maritime 
logistics problems tend to suffer from that.

In combinatorial optimization problems, the number of possibi-
lities increases drastically with the problem size. To understand 
this better, let’s consider an example: a simplified variant of 
fleetwide voyage planning in shipping companies (Fig. 1). In a 
generic form, this problem is defined by a set of delivery jobs, 
which have a pick-up harbor, a drop-off harbor, and a capacity 
requirement for the freight (usually weight or volume), as well 
as a set of ships with maximum loading capacities. The task 
is to plan routes for each ship, such that all delivery jobs are 

3.	 Combinatorial Explosion and  
Limits of Computational Resources
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Combinatorial Explosion and Limits of Computational Resources

Fig. 2: Heuristics approximate complex calculation tasks to 

simplify them. The freedom to introduce more, or cruder 

approximations creates a tradeoff between the required 

calculation time, complexity of the optimization task and the 

quality of the solution.

processed while complying with the maximum loading capaci-
ty of every ship.

The number of possible routes, from which we need to pick 
the best one, scales strongly with the number of harbors (or 
jobs). In other words, if the number of harbors is increased 
slightly, the number of possibilities grows tremendously. Of 
course, in such routing problems, the number of possibilities 
depends on the details of the application, for example further 
constraints or the number of ships in use, but characteristi-
cally for n harbors the number of possibilities grows roughly 
as n!=1*2*….*(n-1)*n. The fact, that every additional harbor 
increases the number of possibilities by a factor, rather than an 
absolute amount, causes the number of possibilities to quickly 
grow to amounts that cannot be handled with any kind of 
computer. To give an idea how severe such scaling problems 
are, here is a placative example: 

60 harbors already allow for more possible routes than there 
are particles in the universe (roughly 1080).

The above introduced and simplified example of fleetwide 
voyage planning illustrated the problem of combinatorial 
optimization. Typically, there are too many possibilities to 

individually search through them all, regardless of whether we 
use a laptop or a supercomputer. Such problems are usually 
tackled by heuristic methods. They make application-specific 
assumptions/approximations about the optimal solution and 
use that to guide the search. While this guided search can 
massively reduce the required calculation time to find a good 
solution, they usually cannot guarantee the optimality of the 
solution. Afterall, a guided search is merely an educated guess 
on which parts of the search space are most likely to include 
the optimal solution. So, with heuristics, faster calculation 
times do imply that the search space has not been fully che-
cked. Since a reduction of the search space also reduces the 
chance of including the best solutions, heuristics introduce a 
tradeoff between the complexity of the model to solve, the 
required calculation time and the quality of the solution (Fig. 2). 

More powerful computers require fewer compromises bet-
ween the calculation time and the quality of the result. This 
could improve business applications, because higher quality 
solutions translate to more efficient allocation of business 
resources, while lower calculation times allow easier replan-
ning, i.e., higher flexibility in dynamical surroundings.
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Quantum Computing: Introduction and Potential

Fig. 3: Quantum Computing will have a major impact in many 

fields. Its potential in optimization and related applications 

make it interesting for logistics.

Fig. 4: While classical bits can only have one of two well-defined 

states, a Qubit can also be in statistical mixtures of those two 

classical states. This forms a continuous state space which is 

typically visualized as a sphere, where the longitude translates 

into probabilities for either classical state. Here these probabili-

ties are color coded.

Scaling of required computational resources is central to 
quantum computing. While classical computers have been 
developed to have ever-growing memories and frequencies of 
logical operations, the big promise of quantum computing is 
not to increase this even further. Instead, QCs calculate more 
efficiently due to their totally different way of working. More 
precisely, there are certain problems, where the calculational 
resources (especially time) a QC requires scale less harsh than 
those a classical computer requires. Some of the major fields 
in which QCs offer great potential are listed in Fig. 3.

4.	 Quantum Computing:  
Introduction and Potential

Quantum computers can achieve this improved scaling of 
computational resources by offering different resources 
combined with different algorithms. Instead of normal bits, 
they have qubits, which do not only allow values of zero or 
one, but also so-called quantum superpositions. To unders-
tand this distinction, one should think of the values, that a 
qubit can take, as possibilities, with probabilities assigned 
to each of them. This is fundamentally different, because 
a classical bit always has a deterministic state, i.e., cannot 
have statistical states. A qubit on the other hand, could, 
for example, be in a 50:50 state, in which both values are 
equally likely (Fig. 4). 

Potential Quantum Computing Applications Bits vs. Qubits
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Quantum Computing: Introduction and Potential

Fig. 5: When searching through a set of possibilities, classical 

computers must check every possibility individually, therefore 

the calculation time grows linearly with the number of possibi-

lities. Quantum Computers can accelerate this process and the 

required calculation time then only grows with the square root 

of the number of possibilities

This seemingly small difference between classical bits and qubits 
has huge implications. While n classical bits can take 2n different 
states, n qbits can take any quantum superposition, i.e., statis-
tical mixture of these states, thereby forming a 2n dimensional 
space, also known as vector space. While the technicalities of 
this mathematical construct are not the topic of this work, it is 
important to understand, that this kind of vector space cannot 
easily be simulated on a classical computer. In fact, it would 
have the same issue as other complex problems, for example 
the fleetwide voyage planning problem introduced in the last 
section: it scales badly. Simulating one additional qubit doubles 
the problem size. In a QC, this huge state space does not have 
to be simulated though, but it is physically implemented, and we 
can operate on it easily and efficiently. So, in essence, quantum 
computing utilizes a harshly scaling state space for solving har-
shly scaling problems to outperform classical computers. 

One less abstract way to illustrate the advantages of those 
probabilistic states is the idea of quantum parallelism. A 
quantum computer can apply a function to a superposition 
(statistical mixture) of inputs, which will result in a superposi-
tion of results. A classical computer cannot do that. To apply a 
function to multiple inputs, it needs to either work sequentially 
or, it needs multiple processors for normal parallelization. The 
shortcoming of simply imagining QC as a way of parallelization 
is, that the result is also a quantum superposition. Extracting a 
meaningful answer, i.e., a concrete non-statistical result, from 
that superposition is often the main problem in quantum algo-
rithms (for example so-called amplitude amplification).

While the high dimensional state space of a quantum computer 
is immensely powerful, it is not always trivial to utilize it and 
gain an advantage over classical algorithms. Examples of prob-
lems and corresponding algorithms, that offer a scaling impro-
vement over classical calculations do exist though. The most 
famous one is probably Shor‘s algorithm for prime factorization, 
which yields an exponential speed up [8] [9]. In other words, the 
calculation time required to solve this task on a classical compu-
ter is an exponential of the length of the problem. On a QC, the 
calculation time is a polynomial of the length of the input data, 
so the quantum speedup grows with the problem size. Howe-
ver, the potential application of Shor’s algorithm is in cryptogra-
phy and therefore, not directly relevant in logistics. 

For logistics, we are interested in optimization and, related to it, 
search algorithms. Grover‘s algorithm is a search algorithm that 
searches through N possibilities, but only scales with N [10]. That 
means for a sufficiently large search space, it requires less steps 
than there are possibilities, even though it does check every single 
one (Fig. 5)! This kind of search is strongly related to optimization 
– Grover’s algorithm searches an item that fulfils certain conditi-
ons, an optimization algorithm searches an item that optimizes a 
function. Both tasks become difficult, if the number of possibili-
ties is very large. Because of the similarity of the problems, there 

Quantum Speedup in Unstructured Searches

is hope to speedup optimization in a similar fashion as normal 
searches, for example by using the Quantum Approximate Opti-
mization Algorithm (QAOA), a quantum optimization algorithm 
for generic functions. But even if QAOA cannot live up to those 
expectations, we could still decompose optimization tasks into 
multiple decision (i.e., search) problems and thereby directly utili-
ze the speedup of Grover’s algorithm in optimization tasks. 

The examples above clearly show one important fact: the 
speed-up, that a quantum computer offers, depends strongly 
on the problem one wants to solve. It does not automatical-
ly outperform classical computers on everything. Quite the 
opposite, classical computers are cheaper, larger, simpler and, 
at least at this point of technical development, more reliable. 
Therefore, quantum computers are only useful if one leverages 
their advantages. 

Due to this tradeoff between scaling advantages and disad-
vantages in size and cost of the system itself, the choice of use 
cases is essential to applied quantum computing. The per-
spective QCs offer for optimization are scaling improvements 
in combinatorial optimization. Such improvements can either 
enable us to solve problems that were not feasible before, 
allow us to improve the approximations and thereby increase 
the quality of the solution, or simply reduce calculation times 
to increase the flexibility in planning.
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Current state of Technology 

5.1 QC Hardware 

There has been remarkable progress in the development of 
quantum computers over the last couple of years. In contrast 
to classical computers, where there is one well-established 
hardware technology, namely semiconducting transistors 
based on silicon, in quantum computing there is not yet one 
clear winner in the competition for the best quantum compu-
ting hardware platform. 

In fact, there are not only different approaches to the physical 
implementation of qubits, but even multiple approaches to the 
calculational model. To name the most prominent ones:

gate-based universal quantum computing
measurement-based quantum computing 
annealing.  

Even though there are vastly different approaches to building 
QCs, the fundamental problems are the same: First, scaling the 
size of a quantum computer is much harder than scaling a clas-
sical system. Second, as opposed to digital computers, QCs, 
as probabilistic machines, have a continuous state space which 
makes them vulnerable to arbitrarily small sources of errors. 
To understand this better, let’s start with classical bits: they 
can only be in one of two clearly distinct states, 0 or 1, and 
switching between those two sates requires a control pulse 
of some minimum strength. If any weak perturbation from 
the surroundings hits the classical bit, nothing happens. This 
results in classical bits, that work almost without any errors. A 
quantum bit on the other hand, has a continuous state space, 
i.e., it is possible to make arbitrarily small changes to the state 
of the qubit. The problem is that arbitrarily small perturbations 
from the surroundings then induce (small) errors to the state of 
the qubit. Even though the single errors might be small, they 
add up, thereby quickly destroying the data encoded in the 
qubit. This is actually also the reason why most quantum com-
puters are cooled down to nearly zero temperature, because it 
reduces the amount of thermal perturbations in the system.

5.	 Current state of Technology 

Both these issues confine the size of feasible quantum calcu-
lations. While the size of the device limits the amount of data, 
that can be stored and processed, the propensity to errors 
limits the length of the calculation. If a program is so long, that 
statistically logical errors are expected to occur, the result is not 
trustworthy. In principle that also applies to classical compu-
ters. Practically it is not an issue though, because their error 
rates are just low enough (roughly a factor 1024 smaller than 
the most advanced quantum computers).

The largest available (universal) quantum computers just 
recently broke the 50 and 100-qubit barriers [6] [11] [7]. While 
that is an impressive technological achievement, it still means, 
that current quantum computers can only work on problems 
with variables that fit in roughly 100 bits. Of course, most real-
world problems are larger than that (at least in logistics). 

In these QCs, the chance for errors during any calculation, is 
still too high to do useful calculations, even ignoring size cons-
trictions. In the long run, this shortcoming is not as severe as it 
might seem though, because of so-called quantum error cor-
rection. It describes the possibility to bundle multiple physical 
qubits together into one logical qubit, thereby creating redun-
dancy, and to actively correct errors in the physical qubits [12]. 
Implementing quantum error correction is technically deman-
ding, because it requires a relatively high minimal accuracy in 
the underlying physical qubits. There are different estimates for 
this requirement, ranging from an error rate of roughly 10-2 to 
well below 10-3 (errors per operation), due to differences in the 
assumed noise model and error correction technique.

Since error correction performs better with more physical 
qubits per logical qubit, it introduces a tradeoff between 
accuracy and qubit number. This grants the ability to build 
arbitrarily reliable qubits and would be a huge milestone for 
quantum computing, so there has been a lot of work towards 
demonstrating it in experiments, for example [13] [14] [15] [16]. 
With error rates of less than 10-3 even for 2-qbit operation, 
current technology is approaching this milestone.
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1996Discovery of Grover‘s algorithm: Quadratic speedup
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1970Formulation of the no-cloning theorem

2011D-Wave announces Quantum Annealer
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Fig. 6: The development of QCs has drastically accelerated. In addition, the research objective has shifted. The groundwork is esta-

blished, now there is a race for the best technical realization of QCs.

Quantum Computing Timeline
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At first sight, the improvement of accuracy at the cost of redu-
cing the size of quantum computers might not seem to be very 
useful, because right now size is already lacking. The important 
thing to notice is the speedup in increasing the size of quan-
tum computers. This speedup is most visible in the develop-
ments of the last few years and the developments to come. 
While it took many years to develop decent qubits and not 
so long ago the step from one qubit to 3 or 5 qubits on one 
chip was a significant technical challenge, now there are plans 
to increase the qubit number from roughly 100 to over 1000 
within only two years [17]. While those plans are ambitious, 
they do seem realistic, because the most fundamental scaling 
issues already had to be solved for the current generation of 
devices. Now the improvements are more continuous resulting 
in continuously increasing sizes of QCs (Fig. 6).
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5.2 QC Algorithms

To utilize QC, we do not only need good hardware, but also 
algorithms that solve real-world problems while using the 
advantages of a QC. We already pointed to scaling speedups 
a QC can achieve over a classical computer. As mentioned 
before, in the context of maritime logistics, we mostly care 
about optimization and possibly search problems, hoping for 
a quadratic speedup. So, just like the Grover algorithm can 
search through n2 possibilities in ~n steps, we hope for the 
same effect in QAOA.

While a quadratic speedup would be a great technological 
achievement, there is one problem though. Many problems, 
in logistics, scale exponentially. Since the square root of an 
exponential is still an exponential, the scaling would not be 
qualitatively improved, instead only the exponent would 
be divided by two, thereby only doubling the size of feasi-
ble problems. It seems like a rather specific case, in which 
doubling the feasible problem size is worth the cost of using 
QCs.

Especially in logistics, most planning tasks are just too large 
if the underlying calculation scales exponentially (regardless 
of a factor 2 in the exponent). Therefore, we believe, that in 
order to utilize quantum computing in practice, we need to 
do the same thing as in classical computing, namely develop 
problem-dependent heuristics, that yield a tradeoff bet-
ween required calculational resources and the quality of the 
solution. If we succeed in combining a heuristic that scales 
polynomial with a quadratic speedup, this will result in a 
qualitative scaling improvement, namely a lower polynomial 
order.

A major challenge to this approach is the difficulty to design 
algorithms for QCs, which offer a scaling speedup over 
classical systems. But as a first step, designing completely 
new algorithms might not even be necessary. Instead using 
existing algorithms, like the Grover algorithm or QAOA, and 

developing heuristics that bias the search space already has 
the potential to outperform classical computers, because it 
combines the speedup from using a heuristic with the QC’s 
scaling speedup. Technically it is already known how to bias 
the search space [18] [19] [20], namely by adapting the so-
called mixer, an operator that is part of the algorithms [21]. 
Therefore, the next step is to develop suitable heuristics for 
specific logistic applications, implement them and test them. 

Developing applications for QCs, including the identification 
of suitable problems, creating mathematical models, and 
customizing quantum algorithms, is hindered by the currently 
immature technology. Developing the use case and its mathe-
matical model requires calculations with realistic, i.e., large 
data instances – realistic problems tend not to fit in roughly 
100 bits - but developing quantum algorithms requires 
experiments with a QC or simulation environment, which are 
small and in the case of real QCs prone to error. To parallelize 
the development of the use case and the algorithm, we plan 
to include QCs and bridge technologies in our work.

5.3 Computing Platforms 

There are various bridge technologies between normal 
classical computers and QCs ranging from simulation envi-
ronments running on GPU clusters to so-called annealers, 
which are specialized computers for one form of optimization 
problem, namely quadratic unconstrained binary optimiza-
tion (QUBO) tasks. This confinement allows annealers to be 
specifically designed for one algorithm, thereby significantly 
boosting their performance. Let’s first get an overview over 
the computing platforms that we consider for our work:

Digital annealer (for example Fujitsu, Hitachi): A classical 
annealer based on bits, not qubits. As a classical system, it 
is technically mature, i.e., works reliably and at useful scales 
(~8000 bit). It uses thermal annealing, a well understood 
process, as its optimization algorithm and has a chip 

Technical maturity Potential

Digital Annealer Quantum Annealer
Universal 

Quantum Computer

Fig. 7: Estimation of both, the potential, and the technical maturity of the computing platforms we want to use. At this point, 

there is a clear tradeoff between them.

Computing Platforms
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architecture that is optimized for exactly this algorithm. On 
the downside, as a classical device, it does not offer the 
potential for a scaling speedup like quantum devices. 
Quantum annealer (D-wave): The quantum analogue to 
the digital annealer, based on qubits and using quantum 
annealing as its algorithm. Due to its concept as a special 
purpose machine, its technical requirements are lower than 
that of a universal quantum computer. That translates to a 
greater technical maturity, which is most visible through the 
scale of these systems (~5000 qubits). On the downside, the 
question whether these devices, with their current hard-
ware and algorithm, offer a scaling speedup over classical 
systems is subject to controversy. It would be interesting to 
let a digital annealer and a quantum annealer compete on 
some applied problems. 

© Adobe Stock, James Thew 

Simulation environment: It is possible to simulate suffi-
ciently small quantum calculations on classical computers. 
This allows the development of algorithms in a controlled 
environment, which mainly refers to error free simulated 
qubits, or controlled error models. This avoids the implicit 
length restriction on quantum algorithms for current QCs.
Universal quantum computers: As discussed, these devices 
are not yet technically mature, but offer the potential for 
scaling improvements. As an advantage over the quantum 
annealer, it offers the possibility to run arbitrary algorithms 
and therefore solve arbitrary problems. 



Platform-Independent
Modeling

Backend Solver Test & Evaluation

Choose calculational platforms

Create downsized problem for QC

Develop solver

Identify suitable use case

Develop mathematical model

Express as QUBO

Develop frontend:

– Tranlation to QUBO parameter

– Translation of QUBO solution

Evaluate and adapt:

– use case definition

– mathematical model

– optimization target

Test solvers

Evaluate short-, mid- and long-

term potential of each platform
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Current state of Technology 

Fig. 8: Our roadmap for research projects. To iteratively develop the use case and the quantum algorithm, we include different 

computing platforms, while minimizing redundant work.

Quantum Roadmap

Quantum Computing is a technology with great potential, but 
still with insufficient technical maturity. The potential for drastic 
improvements in calculation speed, to a point that it will enable 
completely new use cases for mathematical optimization in 
maritime logistics, is therefore concealed by the current state of 
hardware technology. This makes the development of QC appli-
cations challenging, because testing mathematical models and 
algorithms is not straight forward. After all, the device these 
highly complex calculations should run on, is not yet ready. 

Especially the identification of use cases and developing suitable 
mathematical models, that accurately represent the real-world 
challenges faced in the maritime industry, should not be unde-
restimated. In opposition to that, discussions about QCs usually 
focus on solving mathematical models but not on defining them. 
This highlights their role as enablers but does not work towards 
providing full solutions to problems in logistics. To allow testing 
and iterative development of applications and mathematical 
models, one needs to be able to solve realistically sized optimi-
zation problems. This is possible by confining the form of the 

6.	 What now?  
Developing QC Applications
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mathematical models that we develop to QUBO and using 
(digital and/or quantum) annealers. Annealers seem like a 
great choice, because QC applications will always be com-
plex problems, such that large amounts of calculation power 
are necessary. Of course, they do not offer the performance 
we expect from a mature QC, but since testing does not 
have the same time and quality constraints as an operational 
environment, they are sufficient for the development of QC 
applications.

While annealers allow the development of use cases, they 
are useless for the development of quantum algorithms for 
optimization. Developing those requires using current QCs 
and/or simulation environments, where downsized versions 
of the original optimization problem can be run. Including 

different computing platforms allows the parallelization of 
both developments. 

Especially when using multiple platforms for calculations, 
we define work modules (Fig. 8), which clearly distinguish 
between generic and platform-specific developments. Since 
the computing platform is only the solver of the mathemati-
cal optimization problem, most developments turn out to be 
generic. 



Level 1: Getting Started –  
Design Thinking
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Fraunhofer CML supports companies in closing the 
gap between cutting edge technology developments 
and roll out to the operative business. It combines 
experience and know-how of both, quantum com-
puting and maritime logistics, making it the per-
fect partner for the development of early-stage QC 
applications. Like the modular setup of the quantum 
roadmap, we also modularize our professional services 
by defining multiple levels for each project:

Who: 

Companies with limited experience/expertise in mathemati-
cal optimization or QC

 
What: 

Support in identifying potential for improvements in opera-
tional business through mathematical optimization
First conceptualization of a software solution
Feasibility study
Benefit estimation of using QCs

Why:

Low entrance barrier
Focus on big picture and adding value
Treat QC as a means not an end

7.	 Opportunities for Cooperation Current 
state of Technology



Level 2: Follow the Quantum Roadmap – 
Calculate and Iterate

Level 3: Final Solution –  
Creating a Software Tool
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Opportunities for Cooperation Current state of Technology

Requires: 

A suitable use case (compare level 1)

 
 
What: 

Develop user interface
Development of mathematical model
Proof of principle and test calculations

 
Why:

Test and improve use case with real data instances
Acquire know-how and hands-on experience on QCs
Quantitative estimate of operational benefit based on test 
calculations

Requires: 

Development of use case and mathematical model 
completed
Clear decisions on user interface
At least one feasible solver developed (compare level 2)

What: 

Development of a software solution for use in operative 
business

 
 
Why

Use the technology in operational business

© Adobe Stock, Travel mania 
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