Maritime Training Simulations - Fast Rescue Boat Case Study

With the advancing technology in recent years, the use of efficient VR and AR applications has gained momentum. VR enables the representation of a virtual world using a head-mounted display (VR glasses). The user can freely move around and interact with this virtual world. There are many advantages to using VR training. The central point is that seafarers can train close to reality, independent of time and location. This can also reduce the amount of training required on board. The game character of the application, the „gamification“, also makes it intuitive and increases the learning success. Once completed, the training scenarios can be repeated as often as required. Theoretical basics can thus be consolidated before practical implementation. The fact that the training is not tied to a specific person or location means that it can also be carried out outside the training facility. All that is required is a powerful computer and VR goggles. Instructions are given during the training session by voice, text or image. In times of contact restrictions and in an increasingly flexible working world, the use of VR training units offers great opportunities.

Through the individual conception and integration of VR applications, the training of seafarers can be raised to a new level in terms of practical relevance. In this context, the CML has developed a complete VR training unit in cooperation with the Fraunhofer innovation platform FIP-S2@Novia in Finland. The „Fast Rescue Boat“ application maps the deployment of a rescue boat in a simulation environment. This enables virtual maneuver training of, for example, nautical personnel on board and rescue workers. The focus of the application is on the observation and execution of the different work steps during the deployment of the (virtual) boat. These are in particular the preparation of the training equipment, the lowering of the lifeboat, the rescue of a POB (person-over-board) as well as the docking of the lifeboat to the ship after completion of the mission. The project was presented at Nor-Shipping 2022 in Oslo and received great interest from trade visitors. Further virtual training sessions are possible and especially planned around processes for the future, e.g. for safety exercises on board.

Saving electricity and costs through intelligent energy management

Successful completion of the dashPORT research project

The energy processes of Europe’s largest silo facility were also optimized in the dashPORT research project
© Fraunhofer CML
The energy processes of Europe’s largest silo facility were also optimized in the dashPORT research project

After three years, the dashPort (short for Port Energy Management Dashboard) research project came to a successful end. The aim was to use artificial intelligence (AI) and the Internet of Things (IoT) to identify energy consumption and energy-related processes in the Port of Brake/Lower Saxony. From this, sensible measures for saving energy could be derived and expensive load peaks avoided. Load peaks refer to a brief sharp increase in energy consumption. They are an important component in the calculation of energy costs, because they are the basis for calculating the grid usage fees of industrial consumers: Grid operators must permanently maintain production capacities for the power - even if it is only called up for a short time - in order to stabilize the grid. Even small shifts or changes in port operations, however, can have the effect of avoiding peak loads. dashPORT thus makes an important contribution to both port sustainability and energy cost reduction - both highly topical issues.

Initially, the project partners equipped cranes, lighting, pumps, locks, electric vehicle charging stations and office buildings and other electricity consumers with more than 450 smart meters that digitally recorded the respective electricity consumption. The specially developed dashPORT software solution summarized all energy data and displayed it clearly on a digital map of the port.

But dashPORT not only showed consumption throughout the port, but also from different temporal perspectives. Data in real time makes it possible to identify disruptions and unusually high consumption. Viewed over a longer period of time, conclusions can thus be drawn about the efficiency of individual electricity consumers. In addition, dashPORT makes energy forecasts that help to actively manage electricity consumption. For example, an algorithm continuously generates forecasts of short-term load patterns and triggers recommendations for action: For example, by postponing a lock by a few minutes, operators can avoid load peaks and use energy more efficiently.


Niedersachsen Ports GmbH & Co. KG, J. Müller AG, Fraunhofer CML and OFFIS jointly realized the research project.

dashPORT is a funded project within the Innovative Port Technologies (IHATEC) program. It is supported by funds from the Federal Ministry of Digital Affairs and Transport. The project was awarded the MCN Cup of the Maritime Cluster Northern Germany in 2021 in the category "How can ports and maritime logistics be made more sustainable?".

Autonomous Operations under Water - Challenge of Locating and Positioning

Autonomous technologies have become an indispensable part of many everyday processes, such as mobility, and help to make them safer, more efficient and more resource-saving. In the EU-funded research project SeaClear, the CML develops solutions for autonomous operations under water together with eight partners. SeaClear is a system of autonomous vehicles that identify and collect maritime debris from the air and underwater.

Underwater, environmental parameters place high demands on people and equipment. Great water depths, high pressures, fundamentally poor visibility, and darkness after a few meters present limitations or hazards for divers, which is why remotely operated vehicles have long been used in areas of research, exploration, and exploitation. The turbidity of the water, deflection or attenuation of signals, and the aggressiveness of (salt) water require new approaches.

Operations use a lot of electronics and IT. Camera systems and other sensors record environmental data, IT systems process them and develop appropriate responses for dynamic situations. In the SeaClear project, the CML ensures the smooth interaction of hardware and software. The CML is also developing the collection basket for maritime litter and the special interfaces for the gripper, which is to reliably place collected litter in the basket. This requires some intelligence so that the gripper can safely control the basket. Pressure sensors and underwater GPS enable three-dimensional localization to within a few meters. The use of further electronic filters and measuring systems limits this radius to one meter. And to actually dock the waste grippper, both optical tools such as light and markers and a mechanical guide rail are used.

Successful tests at the Port of Hamburg in May confirmed the functionality of the developments.  So the CML is now successfully driving the automation of processes underwater as well.

The Quantum Leap for the Maritime Economy

The use and possibilities of quantum computing have been a topic of research for decades. However, we are currently experiencing a particularly exciting phase, as practical application is paving its way and moving closer step by step. A wide range of potentials are being created and exploited at the same time. Quantum computers can be used to optimize processes on a completely new scale and to find solutions that were previously unattainable. 

Modern quantum computers are not bound to the algorithms of conventional computers and are therefore real game changers. Industry benefits from great efficiency and flexibility, because quantum computers can consider several possible solutions simultaneously. In doing so, they require fewer computational steps than ordinary computers, which often face search problems in the face of too many options. Quantum computers are thus the crucial tool for mathematical optimizations that can be used to further develop and completely reinvent systems in the maritime industry. 

The Fraunhofer Competence Network Quantum Computing

To promote application-oriented research, the Fraunhofer-Gesellschaft established the central competence network Quantum Computing in 2021. Since then, the Fraunhofer-Gesellschaft has had access to powerful hardware in the form of the IBM Q System One quantum computer. It is also the heart of the Fraunhofer competence network for quantum computing. 

Divided into eight competence centers, each with its own focus, the network ensures close cooperation with partners and customers from research and industry, also at regional level. In this way, it forms a contact point for companies and research institutions that want to advance the use of quantum computers. This applies both to first-time users and to experts involved in the development of new algorithms. Customers of the Fraunhofer Institutes can familiarize themselves here with the industrial applications of the topic. In addition to offering training and consulting services for the use of quantum computers, the competence network also provides a research infrastructure for commercially relevant applications and demanding requirements to which quantum computing is geared. Participating companies and research institutions thus gain a competitive edge in the economic and innovation landscape. 

Quantum computing for the maritime sector - roadmap to practical implementation

Fraunhofer CML combines knowledge and experience in maritime logistics, mathematical optimization and quantum computing, making it the ideal candidate to support companies in the implementation of this new technology. Fraunhofer CML bundles its expertise in the research field „Ship and Fleet Management“. To accompany customers in corresponding projects, the CML has developed a roadmap for quantum computing projects for application in the maritime industry. The roadmap provides a basic structure to efficiently approach individual issues. In a first step, challenges with optimization potential are identified, for which a mathematical model is set up and developed in the following. The design of this model is very complex. A front end is provided to translate real-world planning into corresponding solution options for the quantum computer. The experts at the CML also select a computing platform whose mode of operation adequately matches the requirements of the task at hand. In this way, an individual approach can be generated for the respective tasks and projects. Through our selection of bridging technologies, the CML actively drives the development of the use case while at the same time elaborating specific quantum algorithms. With this support, maritime companies can bridge the gap between development on the one hand, and operational deployment of leading-edge technologies on the other. 

Due to the flexibility in platform selection at Fraunhofer CML, services and solutions can be developed according to the needs of industrial customers to solve modern optimization projects, such as the automation of logistics planning tasks.  Whether network optimization, congestion planning or deployment & resource planning - mathematical optimizations are not only made future-proof at Fraunhofer CML through the use of quantum computing, but are also raised to a whole new level. Read more about the topic in our new brochure, which you can find on the website Or get in touch directly with your contact at the CML, Dr.-Ing. Anisa Rizvanolli (


© Heidi Pelander

The use of augmented reality (AR), i.e. the addition of computer-generated information to real images, has already become established in various areas. However, AR applications have so far been rare in shipboard operations. Yet this is precisely where an interesting field is opening up. In view of the increasing digitization of shipping, the availability of data on the current nautical situation or details of the ship‘s operating status is constantly increasing. At the same time, the manning levels on many ships are decreasing. It is imperative that safe operation remains guaranteed. Fraunhofer CML employees have been conducting research in this area of conflict for several years.

To ensure that the large amount of information available on board can be processed and made applicable for different users in a targeted manner, a great deal of preliminary work must be done: In addition to analyzing the user-specific information required for individual maneuvers, the data available on the ships plays a decisive role. And last but not least, the presentation of the data must be complete for all individual users, yet easy to implement: Data on ship position and movement, relevant environmental data, and nautical information on approach and specified berth, supplemented by the current maritime traffic situation, enable a pilot to control the ship from shore as well. Camera systems and other optical monitoring sensors can provide important information from the maneuvering stations to the bridge to give the watchkeeper a more comprehensive overview than is currently possible. 

Thus, the use of AR for ship control and pilotage, for example, offers the opportunity to further improve efficiency and safety. 

The latest findings on the use of AR in the maritime sector are summarized in the Fraunhofer CML white paper „Increasing Maritime Situational Awareness by Augmented Reality Solutions“, which is available for free download on our website.

Resilience for Global Container Shipments - use of AI offers Solutions

Developments in recent years and weeks show that the resilience of our transport chains must increase in order to ensure the supply of national economies and economic performance. Flexibility to respond to new challenges and creativity for new, effective solutions are important steps on this path.

Ideas are beginning to emerge for container availability, which has been particularly impacted: For example, some carriers are offering priority services, using older containers longer, or trying to reduce the time until a container is next used by shortening unloading times. On the customer side, early and detailed bookings can help to ensure timely delivery of the container. Nevertheless, one thing above all is currently required: a high degree of flexibility from all participants in the maritime supply chain. This can be supported by the use of data-driven methods and applications of artificial intelligence (AI), as developed in the recently completed C-TIMING project by Fraunhofer CML and the logistics marketplace Container XChange. Algorithms analyze extensive amounts of data and bring insights into the current situation and the complex interrelationships along supply chains. In addition, AI applications can determine best possible decisions as well as forecasts about future developments. The information is available to users in so-called smart services. This includes, for example, the calculation logic for a Container Availability Index, which determines the regional and supraregional availability of empty containers from millions of container trips. 

C-TIMING was funded by the BMBF. 

Learning from Nature: Product Optimization through Bionic Know how

It is fascinating what nature has „invented“: Over millions of years, it has continuously adapted to the conditions of the environment and given both animals and plants the appropriate tools to grant them the best possible conditions for survival. This principle can also be applied to technological issues.

How would nature solve the problem?

We can learn from nature and copy its principles, materials and systems in order to apply them to product development. The Fraunhofer-Gesellschaft uses this form of biological transformation within its research projects and benefits from the bionic know-how it has acquired over the years: We develop innovative, bio-inspired solutions for economic and technical issues.

Examples of bionic approaches of the CML

The latest example of this kind is the BMBF-funded AIRTUBE project: a project we are coordinating to minimize friction losses in pipes, which also reduces energy consumption. AIRTUBE emerged from the EU-funded AIRCOAT project, in which the properties of the tropical floating fern Salvinia were used to develop an artificial film: The film, applied to a ship‘s hull, forms a thin layer of air in contact with water. This effect reduces the friction between hull and water, which in turn decreases the energy required for propulsion and thus fuel consumption and pollutant emissions. The layer of air around the hull dampens the propagation of sound and reduces noise emissions.

If these findings are transferred to water tubes, an air-retaining layer on the inside walls of a pipe will reduce the pressure loss along the pipe and therefore show a greater energy efficienciy in fluid transport. Nature‘s model, the Salvinia effect, leads to the bionic coating of surfaces with a permanent layer of air under water. This technology opens up further fields of application, and the sector of internal pipe coatings offers great potential. The aim of the AIRTUBE project is to develop a suitable demonstrator to show the technical feasibility. To this end, Fraunhofer CML is collaborating with the Karlsruhe Institute of Technology (KIT) and the Bremen University of Applied Sciences (HSB), accompanied by partners from industry. 

Another example of the innovative solutions from nature that bionics offers is the BIOINSPACED project. Here, 10 overall concepts were developed from 130 biological concepts, which present novel approaches to the disposal of space debris. A suitable subsystem was realized in the form of a demonstrator. What literally sounds remote has a good reason: Uncooperative objects in near-Earth or even geostationary orbits, such as old rocket stages or defective satellites, pose a great risk to both manned and unmanned spaceflight. Collisions can lead to an exponential increase of debris on important orbits, making them unusable - for a short time or permanently. As part of BIOINSPACED, the CML has identified, evaluated and combined biological concepts into holistic solutions to help combat space debris and further advance bionics in the space sector. The project, commissioned by ESA, was completed in February 2022. 

Knowledge transfer for companies 

Fraunhofer CML is making the knowledge it has acquired through these exciting tasks in the field of biological transformation available to other companies. We examine the extent to which traditional construction and manufacturing methods, or even design and production methods, can be bio-intelligently transformed - and thus comply with current environmental legislation and contribute to greater sustainability. For this purpose, we offer customer-specific workshops to analyze in a structured way for companies which bionic solutions for industrial products are conceivable and useful. For more information on our bionics workshop, please contact our team leader Johannes Oeffner at


Digital Twins in Maritime Logistics

© Fraunhofer CML
The digital twin as the virtual representation of a real object.

The progressive digitization in the maritime industry is leading to holistic changes in corporate structures and processes. Successful transformations require innovative ideas to respond appropriately to the changed framework conditions. A suitable approach in this context is the concept of cross-functional integration in the form of a digital twin.


The term digital twin is not used uniformly both in practice and in the scientific literature. However, the core idea is that a virtual representation of a real object is created in order to derive and tap improvement potential with the help of this representation. It should be emphasized that a digital twin goes far beyond a purely digital model, for example of a product. A maritime digital twin can, for example, be a synthesis of digitized subsystems in conjunction with real fleet and operational data. It thus forms the key concept for exploiting the overall potential of digitization.


Based on scientific findings, Fraunhofer CML is already developing forward-looking concepts for implementing the digital twin in practice, e.g. in the research project MARIA. The aim is to optimize entrepreneurial planning and decision-making processes and to improve communication along all lifecycle phases of a product. In this way, among other things, an important contribution can be made to increasing the efficiency of shipping fleets and the associated reduction of emissions.


As part of the realization of corresponding solutions, Fraunhofer CML deploys interdisciplinary teams with comprehensive expertise in the areas of digitalization & IT, process management and logistics, and shipbuilding.


© Heidi Pelander

After Sales Services in the Maritime Industry: Digital Concepts Enable Optimization

Project logo MARIA

Maintenance and repair processes on merchant ships are subject to special challenges. A ship is a complex system for which, due to the large number of different components for propulsion and operation, no digital image exists to date: Predicting a system failure is difficult. The location where repairs or maintenance can be carried out cannot always be predicted with certainty. And the required service technicians as well as parts and materials are often not reliably available where they are needed. The last two points in particular characterize the maritime sector compared to other industries. All the more reason why accurate prediction of material wear and system failure would be helpful in avoiding unplanned port and shipyard calls. 

These challenges are being addressed by the MARIA research project. On the one hand, a maritime service platform for the realization of digital services is being designed. In addition, AR-based assistance systems for the crew are being developed, as well as prognosis modules that monitor and evaluate relevant (sensor) data and analyze it with regard to the failure probabilities of the components. 

For this purpose, various analysis methods are used at the CML, such as data mining, machine learning and AI, which recognize certain patterns in this data and thus predict expected failures at an early stage. Data availability and transfer represent another important prerequisite for this, which must be managed during the course of the project. To ensure that the results obtained can be transferred to suppliers‘ service concepts, the project will also develop solutions for innovative service planning and control. Depending on the current system status, these will trigger specific messages to the manufacturer. The combination of these solutions promises to raise the service level in after-sales service to a new level for the benefit of the supplier industry and customers.

MARIA is being funded by the BMBF for a period of two and a half years. In addition to the Fraunhofer CML, eight other partners are involved in the project.

Simulation and Automation of Maritime Shipping - Expansion of Competencies in Finland

The development of assistance systems for maritime shipping has been an important research focus at the CML for many years. A concept for an autonomously operating merchant ship formed the starting point for the development of a number of technologies, which have since been further developed and tested using the CML‘s ship handling simulators. Examples of the new solutions include a shore control station that enables comprehensive monitoring of a fleet of ships from shore, and an autonomous navigation system that detects potentially dangerous situations at an early stage and suggests rule-based responses when necessary.

To open up further dimensions of maritime simulations, researchers at the CML developed the European Maritime Simulator Network EMSN. Currently, 37 ship bridges at 13 locations worldwide can be connected to perform virtual joint maneuvers, to simulate critical situations or to test new communication solutions. The collaboration with Novia, the university in Turku, Finland, has now led to the establishment of the first Fraunhofer Innovation Platform in Finland, „Fraunhofer Innovation Platform for Smart Shipping at Novia University of Applied Sciences“, or FIP-S2@Novia for short. The mission is to develop intelligent maritime systems for the Finnish maritime cluster in cooperation with companies in this field. The extensive simulation infrastructures and the bundled know-how will initially be implemented in a mirror of the EMSN, so that large virtual maneuvers can also be initiated and carried out from Finland. 

A new step towards virtual integration will be presented by FIP-S2@Novia at Nor-Shipping 2022 in Oslo: another player will be integrated in a simulation via VR goggles used to control SAR operations of a fast rescue boat.

Emissions in Shipping: Data Enables Control

© Fraunhofer CML
The MESU-Box (Mobile Environmental Sensor Unit) on board.

According to the International Maritime Organization (IMO), 2.9 percent of all greenhouse gas emissions worldwide are attributable to shipping. Regulations of the IMO and the European Union have been increasing the pressure on the maritime industry to act for years. Since 2020, for example, there has been a global cap of 0.5 percent on the amount of sulfur in ships‘ exhaust gases. Large ships calling at European ports must monitor and report on their CO2 emissions. This requires new systems for measuring and monitoring emissions on board.

As part of the SCIPPER project (acronym for Shipping Contributions to Inland Pollution Push for the Enforcement of Regulation), a flexible measurement system for monitoring ambient air has been developed. The Mobile Environmental Sensor Unit (MESU), a compact sensor unit developed at the CML, enables inference of ship emissions by measuring immissions using electrochemical sensors to measure selected parameters. With a maximum power of 30 W, the MESU is mobile and stores all measurement data locally, provided with a time stamp. A continuously recorded GPS sig-nal provides additional location information. All information from the sensor unit can be clearly read and easily evaluated both directly and for later evaluation in a web portal. In its current configuration, the MESU has sensors for NO, NO2, SO2 and CO2, and can be used not only on ships but also, for example, in ports or on busy roads.

Especially the reliable measurement of emissions turned out to be a real challenge for ship-owners with the EU reporting obligation of CO2 emissions of ships during voyages from, to and within European waters, which has been in force since 2018. In global shipping, with frequent route changes due to weather conditions, trusted emissions projections are not feasible. A tool for reliable emission forecasting and estimation was missing, and be-came the goal of the EmissionSEA project. The software prototype for calculating CO2 emissions is intended to support shipping companies in fulfilling their reporting obligations and at the same time show them the enormous potential for saving fuel and CO2 emissions with even minor speed reductions. 

The data basis is comprehensive. Fraunhofer CML applied its expertise in Weather Routing and Big Data Analysis to process more than 500,000,000 daily AIS data records. From the Automatic Identification System (AIS), movement information was related to vessel size, speed, and meteorological and oceanographic environmental conditions. From this data, as well as information from the meteorological service, speed, and other external influences, fuel consumption and finally emissions will be determined with hourly accuracy. The results from EmissionSEA will serve as a reference variable for the shipping companies‘ calculations. In the software prototype, users can select a comparable ship type and calculate its CO2 emissions. The user-friendly application and smart software supports shipowners in meeting their obligation to prove emissions. The simple calculation of fuel consumption for voyages to and from Europe also provides incentives for avoiding emissions.

The pressure to curb emissions in maritime transport is high. New technologies and applications for data collection and measurement offer more control and show the maritime industry room for maneuver. 

SeaClear: First successful tests of novel robotic system for cleaning sea floor litter

© Fraunhofer CML

A robotic system intended to clean litter from the seafloor has passed its first real-life tests in waters near Dubrovnik, Croatia. The cleaning system, which works similarly to home robot vacuums, was able to see waste on the bottom of the sea and move towards it. A plastic bottle became the first official litter to be picked up from the seabed. This series of tests is a small step in humanity’s goal of cost-effectively cleaning the seafloor, where more than 90% of the sea garbage is found. "Persistence is the rivers' power for cutting through harshest environments. Similarly, we persist in building the SeaClear system, regardless how harsh the times are right now." says Cosmin Delea, scientific researcher from the Fraunhofer Center of Maritime Logistics and Services (CML).

The waste clearing system consists of underwater robots, a surface vessel and drones working together. First, the underwater robots and the drones use sensor data and artificial intelligence to locate and identify litter on the seafloor. When litter is detected, an underwater robot equipped with a gripper is sent to collect the waste. The system has been in development for the past two years by the Europeanfunded SeaClear project (SEarch, identificAtion and Collection of marine Litter with Autonomous Robots) that joins together researchers and industry from five countries. 

You can find more information on SeaClear here, or you can read the official press release

Study on Fleet Management Systems 2021 published

© Fraunhofer CML

The Fraunhofer Center for Maritime Logistics and Services CML has reissued its study on fleet management, first published in 2011: The brochure "Fleet Management Systems 2021" is now available in a completely revised and updated version. The structured presentation of a wide variety of fleet management systems offers companies in the sector the opportunity to find out about the range of products on the market, which is characterized by great heterogeneity, and helps those responsible to make a selection decision. Since its first publication, the study has met with a very positive response and high demand: "The CML conducted this market study to provide shipping companies with an insight and orientation about the solutions available on the market as well as about general market developments. For this reason, a separate section in this edition of our survey is dedicated to the Corona pandemic," said Prof. Carlos Jahn, Head of Fraunhofer CML. "In order to adequately meet all these challenges, the use of an efficient ship and fleet management system tailored to one's needs is more important than ever. As in previous years, the range of solutions on the fleet management system market continues to grow, giving interested parties a large number of vendors as well as products and services to choose from." Fleet Management Systems The shipping industry is facing ever greater challenges. In addition to the increasing complexity of information processing and growing fleet sizes, increasing regulations are also placing higher demands on management.

Effective fleet management software is therefore becoming increasingly important. With the updated and revised market study on fleet management systems, Fraunhofer CML provides an overview of currently offered fleet  management software as well as special modules from nearly 30 providers. The focus is on products that emphasize profitability, efficiency and sustainability - for example, maintenance management, safety/ quality/ risk & compliance and performance management. In what is now the sixth edition, the authors draw on an extensive body of knowledge. On a total of around 100 pages, the study first presents the most important elements and innovations of fleet management systems, followed by a description of market developments in recent years. The various providers and detailed descriptions of their solutions form the core of the study.

Click here to get more information on the new FMS or to buy it directly in our Fraunhofer Bookshop.


© Fraunhofer CML

Biological Transformation - For sustainable value generation

© Fraunhofer CML

In the course of evolution, biology has created a multitude of solutions for the most diverse challenges of natural living environments. As such, it serves as a model: With its „Biological Transformation“, the Fraunhofer-Gesellschaft is striving for the increasing application of materials, structures and principles of living nature in technology with the aim of creating sustainable value.

Our EU-funded AIRCOAT project, for example, involves the development of a new type of hull coating for ships,  for which biology is a model. The special properties of the tropical floating fern Salvinia are used in the project. A foil imitating its properties is attached to the ship‘s hull and forms a thin layer of air when it comes into contact with water. This air lubrication effect reduces friction between the hull and the water, thus reducing pollutant and noise emissions. It also reduces biofouling processes and prevents the release of biocidal substances. The technology developed in the AIRCOAT project is an example of the successful application of bionics in industry and holds new opportunities for the marine coatings sector.

Another example is the BIOINSPACED project: the task of this project is to find biologically inspired approaches for the removal of space debris. The number of satellites and probes orbiting the Earth has grown rapidly in recent decades. Correspondingly, the number of defective objects, inoperable probes and satellites, or fragments after collisions has grown. This space debris endangers not only intact and future objects in Earth orbits, but also communications, weather services, and data collection on Earth. Additionally, it complicates manned spaceflight. ESA‘s Clean Space Initiative is therefore looking for solutions to the problem and has commissioned the CML to identify and analyze bionic concepts that can be used to collect the debris.

The bionic know-how that Fraunhofer CML has acquired in projects and use cases is also being made available to other companies in the maritime industry to examine conventional design and manufacturing methods for their biological transformation potential. CML experts examine new, innovative ways to improve products, increase efficiency, become more sustainable, or differentiate themselves from the competition. Nature as a creative solution provider: Bionics can steer thinking in entirely new directions and provide industry with unprecedented ideas. Find more information our offer here.

Innovative concept Water Cargo Barge brings goods to rivers and canals in Hamburg?

© by Kookay - FraunhoferCML

Transport chains and flows of goods change over time, follow the needs of industry and commerce, and react to changing framework conditions. This is what makes logistics so attractive for many industry players, because efficient solutions and sensible innovations quickly find their way into implementation. In addition to economic and regulatory motives, ecological ones are also playing an increasingly important role, for customers as well as for transport service providers.

Our new project WaCaBa - short for Water Cargo Barge - takes advantage of these general conditions. WaCaBa aims to strengthen water transport and cargo handling on Hamburg‘s inner-city waters. To this end, Fraunhofer CML is  conducting a feasibility study for the Hamburg Authority for Economy and Innovation BWI. This study examines the suitability of the waterways and develops concepts for cargo handling solutions and the operation of autonomous watercraft by determining the demand for transport in various market segments. Economical operation of the WaCaBa is the goal. The operation of the barges is intended to relieve inner-city roads and help reduce pollutant emissions from delivery traffic through modern propulsion  systems.

Other European cities with innercity waterways, such as Paris and Amsterdam, are already using barges in field trials to supply hotels and restaurants, for the CEP sector and other usage profiles. An important prerequisite for the use of barges is the  navigability of the waterways. Since many of them in Hamburg have been partially unused for years, their condition sets a tight framework for navigation and transhipment. And last but not least, the barges and the associated handling facilities are to be operated for different requirements - a tricky task that the CML, supported by scientists from Fraunhofer IML, has now taken on.

On the way to the autonomous ship? Automation in maritime shipping

© -

We often hear the question of when autonomous ships will be underway. This is difficult to answer, because in addition to the technological implementation, many different questions are affected by the realization, which have to be solved by politics, administration and jurisdiction. At the CML, we have already been working for 10 years on the development of technologies that advance the automation of maritime shipping since the initial EU-funded project MUNIN, a concept study on the challenges autonomous cargo ships must face. Our focus is on solutions that concentrate on monitoring, navigation and maneuvering support and are already applicable today.

Shore Control Station

The wide range of issues arising from the operation of an autonomous vessel already inspired the idea of deploying shore control stations in the MUNIN project. They should be able to monitor autonomously sailing ships from shore. By means of telemetry, relevant information about the current situation on board and  the condition of the ship can be mapped and thus monitored, from nautical information about the traffic situation at sea, weather and wave conditions to the operating  status of the machines and aggregates on board. In the event of a malfunction or a critical situation, a shore control station can take over and steer the ship safely. The CML researchers have developed a further development of this remote monitoring and control system together with the Korean shipyard DSME, because the data generated on board a ship are of great interest for timely evaluation on shore in conventional shipping as well.

Watch-free bridge

New technologies can also provide support to relieve nautical personnel of routine tasks and increase safety. Actively linking the steering system to digital nautical charts enables a safe course to be determined, taking into account the applicable rules of way usage and collision avoidance. A prerequisite for this is the use of an autonomous navigation system that picks up and evaluates signals from other ships and objects in the area via AIS, RADAR and camera systems, for example. In the event of a critical situation, the autonomous system can switch to an assistance mode or semi-autonomous operation and, by means of an alarm signal, make a proposal to the watchkeeping nautical officer for course or speed changes in accordance with the collision avoidance rules and adapted to the situation. Such a navigation system for a „watch-free bridge“, that involves the nautical staff only when decisions are required, is being developed by the CML in the B ZERO project funded by the German Federal Ministry for Economic Affairs and Energy.

Maneuver Support

Autonomous docking and casting off maneuvers of large ships are not to be expected in the near future. The nautical and navigational requirements, which today are competently mastered by professionals such as pilots and tugboat captains, are  too complex. Nevertheless, those responsible in the port see potential in digital support for these processes, because employment on tugs is dangerous and requires extensive know-how and experience, and, as in many other areas, there is a lack of junior staff to safely care for a growing number of ships with comparable intensity as before. One solution to the situation may lie in the operation of remotely operated tugs: The valuable resource of „tug personnel“ stays ashore and controls the tug with the aid of virtual reality (VR). In addition to the gain in safety, personnel resources can be used more effectively, because the previously required travel times on the tugs can be used for the maneuvers of increasing ship arrivals. In the FernSAMS project, the CML has set new standards with the development of such a VR control system, together with project partners from industry and science. The project, led by Voith GmbH, has just been presented at the National Maritime Conference and has attracted a lot of attention there. Even if the question of the realization of the autonomous ship has not now been definitively answered: research is working in various areas on the development of assistance systems that will make maritime shipping easier and safer. They have the potential to increase the efficiency of scarce and expensive resources and increase the productivity of maritime shipping. And that in the near future.


© C. Steinweg (Süd-West Terminal) GmbH & Co. KG
Terminal Operating Systems improve the productivity of a wide range of handling processes.

Artificial intelligence for port terminals - Current market overview published

© FraunhoferCML

High handling capacities, new technologies and rising customer demands are creating an increasingly competitive situation among terminal operators. The COVID 19 pandemic has turned the planning of many terminals upside down with new insecurities and unsure expectations. 

The changing environment places high demands on Terminal Operating System (TOS) providers.

TOS are complex IT solutions that control and document terminal operations to optimize handling efficiency within a terminal. In order to adapt to the new needs and requirements of their customers, TOS providers must continuously develop their products. 

With the goals of highlighting trends, creating transparency, and helping terminal operators make decisions about the best TOS for them, Fraunhofer CML is now publishing „Terminal Operating Systems 2021,“ the fourth edition of a market overview.

A number of innovations over the past decade have made TOS more productive worldwide. Extensive data collection by technical and IT systems on terminals lays the foundation for the use of artificial intelligence. The goal-oriented data analysis enables immense possibilities for gaining specific information and optimizing processes. More and more providers and users of TOS are beginning to take advantage of this enormous potential. They expect AI to open up opportunities for better coordinated and more efficient operations, lower energy consumption and seamless communication.

For this reason, the use of AI in TOS is a key focus in this year‘s study. In addition, the study provides detailed information about the systems on the market today and presents their respective performance characteristics and modules in a clear and comparable manner. The study thus also provides a basis for selection and decision-making processes.

The study „Terminal Operating Systems 2021“ is available in English. You will find all the information you need to obtain the study here.

Hydrogen - Added value for the maritime industry and logistics

© © AA+W -
Das Fraunhofer CML forscht an Speicherung, Umschlag und Transport „grünen“ Wasserstoffs.

According to experts, hydrogen will play a central role in Europe‘s energy supply before the end of this decade. The young hydrogen industry aims to synthesize a versatile energy carrier from a free raw material using surplus energy. The drivers of this energy and transport revolution are placing great hopes in particular in green hydrogen, i.e. hydrogen produced with renewable energies. The focus is mostly on production and utilization potentials, rarely on transport, handling and (intermediate) storage - and this is exactly where the Fraunhofer CML comes in with new projects. 

A look at the end of the decade: The maritime supply chain begins far offshore. According to the power-to-X principle, hydrogen is produced partly directly at sea (offshore) using northern German wind power and electrolysers. From there, it is transported by bunker ships to ports, where it is fed into a hydrogen network and supplied to industry and heavy goods traffic.

The location of northern Germany also offers good conditions for this scenario because of its high-performance maritime industry, the know-how for setting up the offshore production sites, the transport and transhipment on land, and the potential large-scale consumers in the form of industry and maritime shipping. 

In a certain sense, the maritime industry has a dual role to play in the transformation: It must not only become part of global hydrogen logistics and build up corresponding infrastructures (also for imports) in ports and fleets, i.e., in addition to maritime transport, it must also develop solutions for transshipment in ports and for transport inland. 

Shipping itself, as an emitter of CO2 (responsible for nearly 3 percent of global emissions) and pollutants, must also become more sustainable. The CML is collaborating on various solutions in both areas. 

Among other things, Fraunhofer CML supports companies in the identification as well as the practical implementation of possible applications of hydrogen, both in maritime transport and in hinterland logistics. To this end, it has conducted a current study together with other Fraunhofer institutes. This study examines the prerequisites for the supply chain of a hydrogen economy that is to be established - as well as its transport requirements in terms of production, transport and use. It also serves as a preliminary stage for developing the necessary technologies or services for companies in their individual demand scenarios. This should enable them to actively shape the future market.  

The manufacturing industry itself is also increasingly exploring the possibilities of decarbonizing its production. In a project on hydrogen logistics, CML employees are modeling and evaluating logistics chains for hydrogen transport to an industrial company inland, taking particular account of transport-related energy losses. Transport and logistics costs are considered a decisive factor for the competitiveness of hydrogen  - transport losses and the connection to the industry are still considered weak points.  

Another starting point for using hydrogen in maritime logistics is synthetic marine fuels. To this end, the Fraunhofer Alliance for Transport, with the participation of the CML, is organizing a Digital Session on March 25, 2021. On the topic of „Hydrogen-based Fuels in the Maritime Industry,“ a panel of experts will explain the status and promising developments of hydrogen technologies in shipping (see „Dates“). Keynote presentations will address hydrogen engines, the development of hydrogen systems and the expected market development. A discussion with the participants on the most promising developments is explicitly encouraged.

Over the course of the still young decade, a hydrogen economy will become established, in which several sub-sectors of the maritime supply chain will play a decisive role, that much is certain. Maritime companies should now address the question of how they can align their business fields to this and help shape the transformation. This will give them the opportunity to position themselves in the market at an early stage, to help shape what is on offer, and to benefit from the value chain. 



SCEDAS® - Workforce Planning. Mathematically Optimized.

© GettyImages - anucha sirivisansuwan
Workforce planning can be optimized with mathematical algorithms.

With the SCEDAS® software suite, you benefit froma crewing solution that has proven itself overmany years not only in practice fromthe container to the cruise industry, but also in application areas beyond themaritime domain.

SCEDAS® offers individual support for short-termpersonnel deployment by determining and proposingmathematically optimized, detailed crew demands and deployment plans. It offers decision-making support for strategicmanagement decisions as well as for a dynamic crew scheduling onboard. Task-based time tracking onboard the vessels creates the required data foundation. This allows insightful data analysis, that enables the company- specific configuration of SCEDAS®.

SCEDAS’ approach to workforce planning increases the ability to plan for seafarers,minimizes incompliance to rest regulations and thus increases the safety of ship operation. Its solutions create transparency within the company and provide a data-driven basis of discussion, which guarantees the quality requirements of customers and reduces costs at the same time.

Find out more about SCEDAS® in our brochure


© Fraunhofer IML
The Internet of Things enables more efficient and sustainable processes in the port.

Internet of Things: The invisible Network in the Port

In a modern overseas port like Hamburg, it is not easy to keep track of things. Complex logistics chains from sea transport to goods handling in the port to the hinterland connection require the coordination of countless sub-steps and participants. Frictional losses are hardly avoidable - at least so far. 

What seemed unsolvable for a long time is now made possible by the so-called Internet of Things (IoT): the digital networking of many individual parts of a system with each other, which then exchange fixed information directly, automatically and in real time. Devices or vehicles communicate by means of small processors and embedded sensors. For example, they can communicate their locations to each other. With appropriate programming, devices, machines and systems can autonomously accept and process previously defined tasks.

The I2PANEMA research project („Intelligent IoT-based Port Artefacts Communication, Administration & Maintenance“) is exploring the framework conditions of digitized ports (smart ports). The project will test under real conditions how ports can become more efficient and environmentally friendly by digitizing processes using IoT. 

This is to be piloted and proven by a series of application experiments in selected business scenarios. The research and development teams are working together with port authorities, ship owners, telecommunications companies and intermodal terminal operators. Specifically, the project will work with the HPA (Hamburg Port Authority), DeltaPort, Bayernhafen, DSW21 (Dortmunder Stadtwerke) and other European project partners to develop IoT applications in the ports of Hamburg, Wesel, Dortmund, Nuremberg, Gijon (Spain) and Derince (Turkey) and derive an IoT reference architecture. In this architecture, self-steering container stackers, intelligent light masts and autonomous gantry cranes will be optimally interlinked - thanks to IoT. The self-steering container in agile logistics chains is also reflected in this vision of seamless IoT interoperability of European 

seaports, which could culminate in a network of smart ports or fully digitized ports. The networking of all these components would not be possible without IoT. The I2PANEMA project is now collecting findings on how to optimize the interaction in the respective digital „ecosystem“ and how to evaluate the information gained.

The dashPORT project - short for „Port Energy Management Dashboard“ - pursues another approach to digitizing port operations. Here, the focus is on previously unused potential for saving energy. This has two positive effects at once, since emissions can be saved in addition to immense costs.

In order to record the electrical consumption of all relevant consumers in the entire port environment in detail and in real time at the terminal, around 500 digital remote-readable electricity meters are currently being installed. The measured values are transmitted by IoT and continuously evaluated and processed by Machine Learning. By determining and displaying the power consumption in a central, clear dashboard, dashPORT enables the more conscious use of energy-intensive consumers and the saving of avoidable energy consumption. In addition to preparing information for easier evaluation by the user, the algorithms can reliably forecast consumption peaks, which result, for example, from knowledge of upcoming ship arrivals and the associated handling activities. This makes energy management in the port more transparent and easier to control.

Despite all the new possibilities for digitizing ports, one challenge remains: To ensure smooth communication within the entire complex IoT system so that compatibility within the overall system works. The savings potential through leaner logistics processes using automation and smart measurement technology is enormous, but this requires a common technical standard for IoT applications. For successful networking and information transfer, all components must have appropriate interfaces and the data formats must be coordinated. This will allow port and terminal operators in the future to improve the efficiency of work processes in ports and thus increase their goods turnover, manage port traffic better and more securely and reduce emissions (noise, light, air, water). The presented projects at the Fraunhofer CML drive these approaches.

New Insights through KI Use - Optimization Potentials for Empty Containers

The timely provision of empty containers at the respective place of loading is a crucial component of global supply chains. According to current estimates, the associated transport costs alone are in the region of 20 billion USD per year. At present, the Fraunhofer CML and its project partner xChange, a leading global logistics marketplace for the brokerage of sea containers, are investigating how artificial intelligence can help to effectively reduce these costs.

The goal is to predict a Container Availability Index developed with machine learning techniques, which will serve logistics companies, freight forwarders and shipping companies as an information basis for planning and controlling container transports. Under the project title C-TIMING the project is funded by the German Federal Ministry of Education and Research.

First project results show that often already a targeted analysis of the existing data - in this case several million container journeys - reveals correlations from which savings potentials can be derived directly. In particular, the focus here was on additional costs in the event of late return of containers to the inventory of the respective shipping company. The analysis shows that in practice these often avoidable costs quickly reach four-digit figures for the individual company. For a cost-minimizing strategy, the large regional differences with regard to „demurrage & detention“ (demurrage in port and costs for late return of empty containers) should be used. 

The analysis and evaluation methods used in C-TIMING for large data volumes are universal and can be applied to many problems. We would be pleased to support you in the focused evaluation of existing data and identification of cost reduction potentials with the key technology Machine Learning and in the determination of suitable key figures and realizable findings for your company. 

The Autonomous Research Boat SeaML - Research Platform for Maritime Innovations

© Fraunhofer CML
Tests of the numerous sensor technology and the ROV confirm the performance of SeaML.

+++ UPDATE: View here a vidoe which shows our research boat SeaML in action:

Our first research boat is an Autonomous Surface Vehicle (ASV) and is called SeaML. SeaML is equipped with autonomous assistance and navigation systems and serves as a modular development and demonstration platform for various innovations in nautics, sensor technology and maritime technologies in general. 

The research boat is a catamaran with the dimensions 1.5m length and 1.2m width. The hulls are connected by a superstructure which serves as a flexible carrier for different technologies. SeaML has a payload of 40 kg and can therefore be equipped with extensive sensor technology, e.g. for high-precision depth measurement, environmental data acquisition and an underwater vehicle (Remotely Operated Vehicle, ROV). A web-based user interface has been specially developed for SeaML‘s mission planning, with which graphically supported services and work tasks can be defined, orders can be started and monitored, and the controller can be accessed. Thus, SeaML services can be requested and supervised from any location. The ROV is connected to a camera and further sensor technology with SeaML via a cable.

The first missions carried out with SeaML this summer included the development of innovative services for ports and the testing of a new type of hull coating: Robot-supported underwater inspections and automated real-time hydrographic measurements as a preliminary step to avoid groundings were successfully carried out. SeaML also served as a carrier for innovative communication technology and sensor systems of project partners. In addition, SeaML supported the observation of results under driving conditions as a test vehicle for an air-holding foil which reduces friction between the hull and water and thus reduces fuel consumption. 

With SeaML‘s in-house development we have created a flexible platform that can be used for a wide range of different research tasks, supports our current projects and can be adapted for the development of new ideas and concepts. The next stage of development will be the combination with a flying drone, which SeaML can use as a take-off and landing platform to gain a higher range and to offer air-based innovative services like inspection or surveillance. A special challenge will be the realization of a collection mechanism for maritime waste, whose miniaturized prototype will be tested with SeaML.

A second, larger SeaML is already being planned and will expand the CML fleet next year.


© Aleksandr Marko -
Satellites collect and transmit a variety of data, also for maritime applications.

Use of unmanned surface vessels - Unrealistic hype or feasible solution?

Autonomous shipping is a topic of increasing relevance. For years, researchers at CML have been addressing its challenges and have set new standards in autonomous control as well as in digital information acquisition and analysis. As yet, no Unmanned Surface Vessel (USV) has been deployed that can reliably withstand the harsh conditions at sea over the long term. But intensive effort is being done on its development. Together with Raytheon Anschütz, CML has been working on the development of potential applications for small USV within the scope of a feasibility study. While the technical concept development was carried out by Raytheon Anschütz, the CML evaluated the economic efficiency of possible areas of application for USV and also identified user requirements for these services.

Decisive for the further development work is the acceptance of the market: Interviews of CML researchers with maritime stakeholders have shown that the collection of data and information about vessels, maritime infrastructures or the marine environment can be an important application area for USV.  With their support, maintenance processes can be made more efficient and maritime and environmental safety can be increased. The use of USV as a launch and landing platform for drones is also a way to expand the operational circle of flight systems in the maritime environment. Last but not least, USV can perform transport tasks „on demand“, for example to offshore facilities. The USV could be monitored from land, an offshore facility or a mother ship.

The concept development was supported by ESA‘s ARTES program, which promotes the development, implementation and pilot operation of integrated applications that should lead to sustainable services. The general approach of the program is to develop services that rely on space data (e.g. satellite images, satellite AIS or satellite communication data).

Visualizing Power Consumption on Terminals and Reducing Energy Costs and Emissions

Electricity consumption at cargo handling terminals is high and varies greatly depending on the operation.  It has financial and environmental implications and challenges for network operators and users. This is reason enough to analyze the situation in detail and improve it with the help of digital solutions.

In the dashPORT project - short for „Port Energy Management Dashboard“ - the companies Niedersachsen Ports and the transhipment company J. Müller in Brake are now supported by Fraunhofer CML and OFFIS - Institute for Information Technology in setting up an energy consumption monitoring system. In order to record the consumption of all relevant consumers in the entire port environment in detail and in real time on the terminal, about 500 digital remotely readable electricity meters will be installed. Their readings can be continuously evaluated and processed using machine learning. One focus lies on the largest consumers, e.g. the grain handling of J. Müller AG and the operation of crane systems and lighting through Niedersachsen Ports.

The aim of dashPORT is the more conscious use of energy-intensive consumers and the saving of avoidable energy consumption. In addition, dashPORT will predict power consumption and consumption peaks resulting from the knowledge of upcoming ship arrivals and the associated handling activities.  

With the implementation of dashPORT, the Port of Brake can actively contribute to environmental protection, make energy consumption and thus emissions more efficient and participate in relieving the electricity market by reducing peak loads. This also pays off financially for the companies: Savings of 10% are expected in the area of electricity consumption.  

DashPORT is funded over three years by the German Federal Ministry of Transport and Digital Infrastructure‘s IHATEC funding program for innovative port technologies.

Staff Planning 2.0: At the Right Place, at the Right Time

© chokniti -
Die Personalplanung 2.0 optimiert Arbeitsprozesse und den zugehörigen Personaleinsatz.

Shipping and maritime logistics are highly efficient and sophisticated systems. Many formerly very labor-intensive processes in maritime transport and goods handling have now been digitized and automated. As a result, many workplaces look completely different and many employees are now responsible for extensive and complex tasks. To coordinate them efficiently is the task of staff planning 2.0. 

Technological progress makes us forget many of the hardships of the old days of shipping, but also creates new challenges. Over the years, ship crews have become smaller and smaller due to efficiency requirements and technical innovations of the ships. One example: HMM Algeciras, a cargo ship with a length of about 400 meters and a capacity of 23,964 TEU, has a crew of only 23 persons. These few officers and sailors must be optimally deployed to ensure trouble-free ship operation. Perfect planning is essential here in order to distribute the workload evenly among the crew members, in compliance with legal requirements, and to ensure that the right person with the right training is optimally deployed at the right time. 

Challenges in staff planning and workforce management

Reduced crew resources on the ships may pose compliance risks for shipping companies, for example, when it comes to observing the prescribed rest periods. In addition, large handling volumes and short lay times of merchant ships have led to a higher workload for the crew in recent decades. 

These new conditions, in combination with legal regulations and administrative efforts, make it difficult to assess staff requirements based on knowledge and experience alone. Added to this is the special circumstance that the crew on board is responsible for both operation and maintenance of the ship. Consequently, maintenance management is closely intertwined with staff deployment planning. The challenge is to consider the interdependencies between maintenance, operation and crew management in ship management.

Even small unforeseen incidents, not to mention a pandemic, quickly throw everything back into confusion. A flexible system is needed to be able to react agilely to such developments without spending a lot of time on planning alone. 

Smart support

Paper-based planning processes are no longer suitable for meeting these challenges. Today, computer-based information management systems play a key role. Therefore, Fraunhofer CML has developed the software tool SCEDAS®, which calculates mathematically optimized schedules and calculates voyage and ship specific crew requirements. It is already in use on container ships and bulk carriers worldwide and is constantly being further developed. It covers various areas of application in staff deployment planning. Among other things, it supports planners with the help of mathematical optimization techniques in calculating detailed work plans for each individual seafarer and takes into account the imponderables typical for the industry by using sophisticated planning algorithms to constantly update the work plan in real time during the voyage. 

To better manage the simultaneity of maintenance and operations for the crew, the latest development of SCEDAS® includes a data-based decision support system for maintenance and management. It helps to plan maintenance work efficiently and in accordance with regulations, taking into account the voyage-specific workload of the crew and taking into account the requirements of company policy, classification societies and legal regulations. CML develops the exact requirements for the software solution individually tailored to the needs of each customer. Thus, with SCEDAS®, every user receives a company-specific taff planning system.

Application in other industries

SCEDAS® was developed for maritime applications, but is also suitable for staff management in other areas. The question of the correct deployment of employees, especially in highly specialized fields, is familiar to many companies. The program can be used where personnel scheduling must take into account factors such as availability, skills and authority of employees, right up to legal regulations. More information about SCEDAS® can be found at


© Fraunhofer CML
The analysis of data for weather routing is relevant for a safe and efficient voyage.


Trucks arriving at terminal gates in an uncoordinated manner, difficulties in manning the crew on board in the right number and with the required qualifications, ships lying at achorage after weeks of sailing - in the maritime transport chain, frictional losses and inefficiencies can lead to avoidable costs and reduced productivity. In many cases, a targeted analysis of existing information reveals weaknesses and optimization potential. We at Frauhofer CML accept this challenge and develop solutions for practical applications. 

Maritime companies accumulate digital data in many different forms and formats in their business activities - sometimes systematically, sometimes unintentionally. The data come from various sources, for example from ship sensors or fleet management systems, and additionally navigational and technical operation data are available. Much of this data often lies unnoticed and scattered on the servers, but it can be used to gain capital for optimizing  further operations. After all, the correctly assembled combination of this data provides information that can form an important basis for future decisions. 

Customized data evaluation 

The Fraunhofer CML has the competence and the methodology to analyze and interprete data in a targeted manner. Because even though much can be done with algorithms in data analysis, the art lies in knowing how to prepare the data. This requires process knowledge. By recognizing similarities and patterns in data sets, for example, an unmanageable database can be categorized and made accessible. However, apart from the question of what data is available or how to access it, entrepreneurs often have no concrete idea of the benefits that data analysis can bring. Especially in maritime logistics there are many areas of application. 

Optimized truck handling 

Data can be used, for example, to better forecast truck arrival times and thus improve traffic flow in the port. For this purpose, the Fraunhofer CML developed a model that uses a digital image of the handling processes of logistics nodes such as port terminals to achieve optimized handling by predicting truck arrivals. This method uses historical and current data and is based on an artificial neural network, which can take into account further influencing factors in the form of so-called predicted values. This can reduce planning uncertainties and achieve optimal truck scheduling for terminals, forwarders and truckers, which reduces avoidable costs. 

Flexible crew planning on board 

In another project, the software solution SCEDAS® was developed to plan the deployment of personnel on board a ship efficiently and in accordance with legislative regulation as well as company specific rules, using mathematical optimization methods. In addition to the special demands of a specific voyage on the crew and their qualifications, SCEDAS® takes into account legal requirements and thus supports the complex task of crew management on land and on board. In the meantime, the SCEDAS® crewing software has been further developed so that maintenance and service tasks are integrated optimally in the work schedule. 

Safe and efficient sea voyages 

The analysis of data from the Automatic Identification System (AIS), which among other parameters transmits position, speed and course data of ships at sea, enables route optimization and the forecast of ship arrivals. Based on historical data (AIS has been used by all merchant ships since 2002), optimal voyages can be determined, but also critical sections with heavy traffic can be identified where increased attention by nautical officers is required. The correlation of AIS data with weather data allows improved up-to-date route optimization, which can significantly increase the safety and efficiency of a voyage. 

Talk to us! 

These are just a few examples from the maritime industry where data analysis has been able to create added value for our customers. In further projects the evaluation is also always user-oriented and driven by the question: How can the analysis help the customer to optimize his decisions, or how can he use his data in a meaningful way?


© Fraunhofer CML
Locations of the EMSN Ship Handling Simulators

The European Maritime Simulator Network, or EMSN Connect for short, has been running for over two years, mainly as a platform for nautical training and testing of new maritime applications in ship control and communication. 10 partners with more than 40 ship handling simulators  are now members of the network. EMSN Connect links the virtual ships in a common simulation environment. In this way, complex and realistic traffic situations can be designed and driven in real time. The expansion of the European network towards Asia is due to the success of the EMSN. The Asia-Pacific Maritime Simulator Network APMSN integrates further simulators in South Korea. In February 2020, the Korea Research Institute Ships & Ocean Engineering (KRISO), Chalmers University of Technology/ Department of Mechanics and Maritime Sciences (Chalmers) and Fraunhofer CML wer e able to conduct the first global simulation in EMSN and APMSN. A ship steered by Chalmers was assisted by a Korean pilot at KRISO in a port arrival and berthing scenario at Busan port. The pilot‘s instructions were carried out by the „crew“ in Sweden. In its role as technical coordinator of the EMSN, the CML controlled the technical setup of the successful simulation. During running simulations, EMSN Connect collects all quantitative data of a maneuvre. Qualitative information can be collected e.g. by interviewing  simulation participants or by external expert evaluations. This provides an important opportunity to evaluate a simulated maneuvre in retrospect and to identify potential for improvement for more safety, efficiency and sustainability of maritime transport. The EMSN was developed in the European funded research project MONALISA 2.0. At that time, the CML for the first time connected ship handling simulators from different manufacturers for the implementation of joint maneuvers. This allows virtual ships to interact with each other from different locations and ship handling simulators and allows scenarios to be tested that could not be replicated in the real world. Read more about EMSN Connect at emsn.connect.


© videotrinkets -
No contradiction: Seafaring romance and digitalization on the high seas.


© alphaspirit -
Efficient infrastructures enable digitalization on land and at sea.

Innovation leap watchfree bridge

The major challenges facing maritime transport include coping with the growing volume of trade, improving maritime safety, economic efficiency and environmental friendliness. In the course of advances in information technology, these challenges have led to the rapid development of autonomous technologies. Within the framework of the BMWi-funded research project B ZERO, the Fraunhofer CML is now developing a sensor and navigation system in cooperation with Wärtsilä SAM, Hoppe Bordmesstechnik, NautilusLog, Reederei Bernhard Schulte, the Federal Maritime and Hydrographic Agency and the Fraunhofer FKIE. The system should be able to guide a ship autonomously between defined departure and arrival points, so that manning the bridge around the clock is not necessary. The Fraunhofer CML will develop an artificial intelligence or autonomous navigation by using reinforcement learning in B ZERO. With reinforcement learning a system can train meaningful decision guidelines without prior knowledge, only by results or responses to its actions. Reinforcement Learning is already used at CML in the fields of  object recognition and robotics, and supports the anticipatory avoidance of collisions and grounding in nautical situations. The AI, which will later take over autonomous navigation in B ZERO, is trained at the CML by simulating nautical scenarios with different parameters such as number of approaching ships, sea area, visibility and weather conditions. The decision component to be trained, e.g. collision avoidance, knows the required state of these given conditions and reacts with the learned, appropriate voyage and/ or course changes to ensure a safe passage on a route. The expected result is a prototype system, which will be further developed in the simulation laboratory environment of the CML and validated by future tests on board a cargo ship. 

Efficiency boost in image recognition

Great potential for maritime logistics results from the use of AI supported image recognition, or computer vision in short. In addition to the acquisition of digital images, it enables their processing into highly compressed numerical information that can be further processed by machines. Computer vision is thus a key technology for the automated observation of conditions and the detection of changes. These capabilities enable a wide range of applications in the maritime sector. In maritime shipping, for example, many autonomous manoeuvres depend on the permanent, simultaneous and reliable situational awareness that computer vision enables. Gradual changes, such as erosion of quay walls or deformations of a ship‘s hull, can be detected by computer vision, as can the position of cargo units on board or at the terminal. The CML supports companies in the maritime industry in  identifying and exploring the individual possibilities of computer vision. As part of the COOKIE project, which is funded by the IHATEC programme, a visual damage recognition and image-based repair prognosis of empty containers is being developed using artificial intelligence. This will not only ensure compliance with applicable security standards, but also make inspection procedures at the terminal gate more efficient. In addition to computer vision, the CML has a broad spectrum of expertise in the field of machine learning and offers comprehensive solutions for AI supported forecasting and assistance systems, from proof-of-concept to implementation.


In the ISI-Plan project, the CML and its partners develop a software tool for planning intermodal transport terminals. The tool combines the proven planning environment visTable of Plavis GmbH and the simulation capacities of Enterprise Dynamics of INCONTROL GmbH. The CML has analyzed and formulated the requirements for the software: With the ISI-Plan software it will be possible to determine the dimensions of the facilities in terms of areas, cranes, path networks, parking areas, transfer positions and number of vehicles for vertical and horizontal transshipment and to test the performance of the facility under these premises. For this purpose, the expected timetables, the expected modal split and the expected loading units by type are entered as auxiliary conditions and the terminal is thus sketched. The ISI-Plan software can map both bimodal and trimodal terminals. The software enables terminal operators and planners to quickly execute operating scenarios and examine them by means of simulation. Investments can thus be analyzed in advance. Up to now, the planning of facilities has mainly been based on existing  experience in terminal operation. With ISI-Plan this knowledge is made available to users in a mathematically validated form. ISI-Plan thus makes an important contribution to the transfer of freight traffic to rail and inland waterways. The Fraunhofer CML coordinates the ISI-Plan project, which is funded within the „KMU-innovativ“ program.


© S. Sosnowski, TU München
In the future, robots with artificial intelligence could clean the sea floor.

Autonomous surface and underwater vehicles represent a constantly growing research area at the CML. Now, with SeaClear, a new ambitious EU research project with participation of the CML aims to use these vehicles to identify and collect marine litter from the sea. Today‘s oceans contain many millions of tons of waste, of which more than 90% is found on the sea floor. So far, efforts to collect the waste are mainly concentrated on surface waste, while little effort is being made to collect underwater waste. A research team of eight partners from Germany, the Netherlands, Croatia, France and Romania is now working to develop SeaClear. The goal of SeaClear - an acronym for „SEarch, identificAtion, and Collection of marine LittEr with Autonomous Robots“ - is to develop and deploy autonomous robots for waste disposal. This includes the identification and mapping of objects on and under water as well as new developments in robot control. When the SeaClear system is fully operational, it is expected to detect and classify underwater waste at 80% and collect it with a success rate of 90%. The SeaClear project will  involve a mixed team of unmanned underwater, surface and aerial vehicles to find and collect litter from the seabed and from the water column, focusing on coastal areas since that is where waste inflow concentrates. The aerial and underwater robotics will be used for mapping the litter, aiming to establish correlations between surface and underwater litter. Finally, combined suction-gripper manipulators will be used for the collection. The developed system will be tested in two case studies in the port of Hamburg and in a tourist area in Dubrovnik. SeaClear receives 5 million Euros in funding from the European Union‘s Horizon 2020 research and innovation programme. The central tasks of the CML are the technical coordination and integration of the overall robotic system. In this context, the hardware and software infrastructure as well as the interfaces for data exchange between the robot vehicles and a land control centre are designed and implemented. The reliable and robust transmission of information is a decisive prerequisite for the land control centre to be able to control the deployment, navigation and monitoring of the unmanned vehicles later on. Read more about Sea-Clear at